While the multilayer perceptron(MLP) provides several advantages against the existing pattern recognition methods, it requires relatively long time in learning. This results in prolonging speaker enrollment time with a speaker verification system that uses the MLP as a classifier. This paper proposes a method that shortens the enrollment time through adopting the cohort speakers method used in the existing parametric systems and reducing the number of background speakers required to learn the MLP, and confirms the effect of the method by showing the result of an experiment that applies the method to a continuant and MLP-based speaker verification system.
Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.351-354
/
2024
최근 온라인 학습의 비중이 증가함에 따라 온라인 학습 서비스의 일부인 온라인 상담 부분도 비례하여 증가하고 있으며, 많은 상담량으로 인해 상담 서비스의 품질이 저하되고 답변의 속도, 효율성도 감소하는 문제가 발생한다. 국내 교육기관에서는 서비스 개선과 사용자 맞춤형서비스를 제공하기 위해 다양한 연구를 진행하고 있으며 민원을 처리하는 챗봇 등 자동 답변 서비스 도입을 추진하고 있다. 챗봇 및 자동 답변 서비스는 서비스 제공자 입장에서 저예산으로 단순한 질문에 대하여 신속하고 효율적인 서비스를 제공할 수 있으며 서비스 이용자는 즉각적인 답변과 유사한 답변 예시를 확인함으로 질문을 빠르게 해결할 수 있는 장점이 있다. 국가 공공기관에서 제공하는 학습 서비스는 단순하고 반복적인 문의가 많고 정형적인 질의응답이 주로 등록이 되고 있다. 자동 답변 서비스는 이런 문제점을 해결할 수 있는 대안이 된다. 서비스 이용자가 등록한 문의를 기반으로 학습한 답변 서비스는 담당자의 반복된 업무처리 경감과 사용자의 답변감소, 일관된 답변처리로 서비스 품질개선에 큰 영향을 줄 수 있다. 본 연구에서는 사용자의 질문에 효율적인 답변 및 민원 처리 서비스를 제공할 수 있는 방법을 제시하며, 관리자의 업무능력 향상과 효율성을 위해 기간별 키워드 빈도수를 계산하여 Word cloud를 생성하여 제공함으로써 사용자들에게 일정 기간 내 빈도수가 높은 키워드 관련 공지 및 안내를 할 수 있도록 한다.
Due to the proliferation of the Internet and intranet, new application domains such as stream data processing have emerged. Stream data is real-timely and continuously generated. In stream data environments, a lot of queries are registered, and then, the arrived data item is evaluated by registered queries. Thus, to accelerate the query performance, diverse continuous query index schemes have been proposed for stream data processing systems. In this paper, we focus on the query index technique for stream data. In general, a stream query contains the range condition. Thus, by using range conditions, the queries can be indexed. In this paper, we propose an efficient query index scheme, called QUISIS, using a modified Interval Skip Lists to accelerate search time. QUISIS utilizes a locality where a value which will arrive in near future is similar to the current value. Through the experimental study, we show the efficiency of our proposed method.
In the case of Domeggook B2B online shopping malls, it has a market share of over 70% with more than 2 million members and 800,000 items are sold per one day. However, since the same or similar items are stored and registered in different catalog entries, it is difficult for the buyer to search for items, and problems are also encountered in managing B2B large shopping malls. Therefore, in this study, we developed a catalog entry auto classification and recommendation system for products by using semi-supervised machine learning method based on previous huge shopping mall purchase information. Specifically, when the seller enters the item registration information in the form of natural language, KoNLPy morphological analysis process is performed, and the Naïve Bayes classification method is applied to implement a system that automatically recommends the most suitable catalog information for the article. As a result, it was possible to improve both the search speed and total sales of shopping mall by building accuracy in catalog entry efficiently.
Ho Kim;Sung-Ha Baek;Yan Li;Dong-Wook Lee;Weon-Il Chung;Hae-Young Bae
Proceedings of the Korea Information Processing Society Conference
/
2008.11a
/
pp.401-404
/
2008
u-GIS 환경에서 발생하는 시공간 데이터는 지속적으로 발생하는 데이터 스트림의 특성을 갖으며, 그런 특성으로 인하여 데이터 발생량이 급격히 증가함에 따라 데이터 손실 및 시스템 성능 저하현상이 발생한다. 이를 해결하기 위해 부하 분산 연구들이 활발히 진행되어 오고 있다. 그러나 기존의 연구 방식인 랜덤 부하 분산 방식과 의미적 부하 분산 방식은 현 u-GIS 환경에서 부하 분산 속도 및 질의 결과의 정확도 측면에 만족스럽지 못한 결과를 준다. 그래서 본 논문에서는 우선순위를 이용한 차등적 부하 분산(DLSM : Different Load Shedding using MAP table)기법을 제안한다. DLSM 기법은 등록된 공간질의의 공간연산을 통해 영역의 우선순위를 미리 부여하고, 데이터가 발생하여 질의 처리기로 유입되기 전 우선순위를 파악한다. 데이터는 우선순위 단계에 따라 유입량을 확인 후 삭제 여부가 결정된다. 결과적으로 부하 분산 속도와 질의 결과의 정확도를 향상시켰다.
Annual Conference on Human and Language Technology
/
2014.10a
/
pp.233-237
/
2014
한국어 자료를 자동으로 처리하기 위해서 다양한 형태소 분석기가 연구되었으나, 대부분의 형태소 분석기는 미리 등록된 명사가 아니면 제대로 분석하지 못하는 문제점을 가지고 있다. 본 논문은 기존의 형태소 분석기를 수정하여 미등록 명사를 인식하도록 하는 방법을 소개한다. 이 방법은 비록 학습 알고리즘을 포함하지 않지만 비교적 구현이 쉽고 속도가 빠르며 형태소 분석기의 정확률 향상에 도움이 되었음을 실험으로 검증하였다. 그리고 이 알고리즘을 응용하여 사람이 반자동으로 미등록 명사를 포함할 가능성이 높은 어절을 수집하는 방법을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
1998.10b
/
pp.78-80
/
1998
분산 데이터베이스 시스템에서 완료규약의 수행은 다수의 메시지의 교환과 로그 레코드를 하게 되는 데 이것은 통신비용과 I/O 비용을 증가시키고 시스템의 성능에 영향을 미친다. 현대의 네트워크와 시스템은 속도는 매우 빠르고, 신뢰할 수 있기 때문에 분산 트랜잭션은 대부분 연산을 성공적으로 수행하고 승인한 후에 완료될 가능성이 많다. 본 논문에서는 향상된 PC규약을 제안한다. PC 규약에서 완료규약 수행 전에 참여자 사이트에서 처리한 연산의 종류를 미리 알 수 있게 하여 규약 테이블에 등록한다. 따라서 읽기 전용 트랜잭션에 대한 메시지 비용을 줄일 수 있고 Initiation 레크드에 읽기 전용 트랜잭션의 정보를 삭제함으로 일기 전용 트랜잭션에 대한 Initiation 레코드 비용을 줄인다. 또한 갱신 트랜잭션에 대한 Initiation 레코드 비용을 줄였다.
Proceedings of the Korean Information Science Society Conference
/
1999.10a
/
pp.114-116
/
1999
웹 기술의 발전과 인터넷의 대중화는 시간과 공간에 제약을 받지 않는 전자상거래의 규모를 확산시키고 있다. 또한 쇼핑몰 수의 증가는 사용자가 여러 쇼핑몰에 등록되어 있는 다양한 상품들 중에서 원하는 상품을 신속하고 정확하게 구입할 수 있는 방법을 필요로 하고 있다. 따라서 본 논문에서는 여러 쇼핑몰들을 직접 방문하지 않고 단일 인터페이스로 정보를 접근하여 많은 양의 상품들의 비교 검색할 수 있는 에이전트를 설계, 구현한다. 본 논문에서 제안하는 검색 에이전트는 JDBC와 서블릿(servlet)을 이용함으로써 기존의 CGI를 이용한 검색 엔진에 비해 검색 속도를 향상할 수 있다. 그리고 기존의 쇼핑몰에서 제공하는 검색엔진은 단순히 검색된 결과를 보여주는 키워드 검색을 제공하지만, 제안하는 검색 에이전트는 사용자의 요구 조건을 고려할 수 있는 비교 검색을 제공한다.
Kim, Taeeun;Jurn, Jeesoo;Jung, Yong Hoon;Jun, Moon-Seog
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.6
/
pp.541-547
/
2019
Recent developments in hacking technology are continuing to increase the number of new security vulnerabilities. Approximately 80,000 new vulnerabilities have been registered in the Common Vulnerability Enumeration (CVE) database, which is a representative vulnerability database, from 2010 to 2015, and the trend is gradually increasing in recent years. While security vulnerabilities are growing at a rapid pace, responses to security vulnerabilities are slow to respond because they rely on manual analysis. To solve this problem, there is a need for a technology that can automatically detect and patch security vulnerabilities and respond to security vulnerabilities in advance. In this paper, we propose the technology to extract the features of the vulnerability-discovery target binary through complexity analysis, and select a vulnerability-discovery strategy suitable for the feature and automatically explore the vulnerability. The proposed technology was compared to the AFL, ANGR, and Driller tools, with about 6% improvement in code coverage, about 2.4 times increase in crash count, and about 11% improvement in crash incidence.
The Journal of Korean Institute of Communications and Information Sciences
/
v.32
no.7A
/
pp.778-784
/
2007
Predictive channel reservation techniques have widely been studied in mobile cellular networks in order to meet the desired quality-of-service requirements. Those efforts are mostly concentrated on predicting the target cell that a mobile will move to and reserving the channel before the actual handoff, and subsequently reducing handoff-dropping probability and improving bandwidth utilization. In this paper, we propose adaptive reporting schemes that a mobile reports its mobility status information such as position, speed, and direction in an appropriate moment based on the user's mobility pattern characteristics and, hence the network can make a more-accurate prediction on the user's mobility. We show from the simulations that the proposed scheme is capable of keeping target cell prediction more accurate and required number of reporting through the wireless up-link channel lower.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.