• Title/Summary/Keyword: 등락예측

Search Result 45, Processing Time 0.028 seconds

신경망을 사용한 매도/매수 주식 종목 선정

  • 임도형;이일병
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.247-250
    • /
    • 2000
  • 주가는 시계일 데이터의 일종으로 많은 변수들이 주가의 변동에 영향을 미친다. 그러나 몇 개의 어떠한 변수가, 어떻게 영향을 미치는 지 정확히 알려져 있지 않다. 그렇기 때문에 주가를 예측하는 것은 쉽지 않으며 단지 등락을 예측하는 것 조차도 쉽지 않다. 본 논문에서는 주가를 신호와 잡음이 혼합된 것으로 가정하고 그 특성을 고려하여, 전 종목에 대한 등락을 예측하지 않고, 예측율이 높은 종목을 선정하는 것을 목표로 하였다. MLP를 BP로 학습시켰으면 입력으로는 28개의 주가분석 지표값이 사용되었다. 여러 예측 기간으로 실험하였으며, 예측기간이 60일일 때 77.1%의 예측율을 보였고 선정된 종목의 등락 예측율은 88%였다.

  • PDF

A New Pattern Analysis Methodology for Time-Series Data using Symbol String Quantization (시계열 데이터의 양자화된 문자열 변환을 통한 새로운 패턴 분석 기법)

  • Kim, Hyong-Jun;Yoon, Taijin;Cho, Hwan-Gue
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.523-526
    • /
    • 2009
  • 시계열 데이터에서 패턴을 분석하는 기법은 많은 발전이 이루어져 오고 있으나 주식시장의 경우 패턴 분석 및 예측에 관련되어 많은 연구가 이루어져 있지 않고 있다. 이는 주가의 등락 자체가 본질적으로 무작위하다고 생각되어지고 있기 때문이다. 본 연구에서는 주가의 등락이 보여주는 무작위성의 정도를 Kolmogorov Complexity로 측정, 그 무작위성의 정도와 본 논문에서 제시한 반전역정렬로 예측하는 주가의 예측 간의 상관관계를 보인다. 이를 위하여 KOSPI 주식 데이터 28년 690개의 데이터를 수집하여 이들 주식 데이터의 등락을 양자화된 문자열로 변환하여 본 논문에서 제시한 방법의 의미를 평가하였다. 그 결과 Kolmogorov Complexity가 높은 경우에는 주가 변동 예측이 어려우며, Kolmogorov Complexity가 낮은 경우에는 주식 변동 예측은 가능하나 등락 예측 율은 단기 예측은 12%이상의 예측율을 보일 수 없으며, 장기 예측의 경우 54%의 예측율로 수렴함을 확인하였다.

Deep Learning-based Stock Price Prediction Using Limit Order Books and News Headlines (호가창(Limit Order Book)과 뉴스 헤드라인을 이용한 딥러닝 기반 주가 변동 예측)

  • Ryoo, Euirim;Kim, Chaehyeon;Lee, Ki Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.541-544
    • /
    • 2021
  • 본 논문은 어떤 기업의 주식 주문 정보를 담고 있는 호가창(limit order book)과 해당 기업과 관련된 뉴스 헤드라인을 사용하여 해당 기업의 주가 등락을 예측하는 딥러닝 기반 모델을 제안한다. 제안 모델은 호가창의 중기 변화와 단기 변화를 모두 고려하는 한편, 동기간 발생한 뉴스 헤드라인까지 예측에 고려함으로써 주가 등락 예측 정확도를 높인다. 제안 모델은 호가창의 변화의 특징을 CNN(convolutional neural network)으로 추출하고 뉴스 헤드라인을 Word2vec으로 생성된 단어 임베딩 벡터를 사용하여 나타낸 뒤, 이들 정보를 결합하여 특정 기업 주식의 다음 날 등락여부를 예측한다. NASDAQ 실데이터를 사용한 실험을 통해 제안 모델로 5개 종목(Amazon, Apple, Facebook, Google, Tesla)의 일일 주가 등락을 예측한 결과, 제안 모델은 기존 방법에 비해 정확도를 최대 17.14%, 평균 10.7% 향상시켰다.

Stock Market Prediction using Sentiment Dictionary based on Predicates (서술어 중심 감성 사전을 통한 주가 등락 예측)

  • Um, Jang-Yun;Lee, Soowon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.857-860
    • /
    • 2014
  • 본 연구에서는 경제 뉴스로부터 서술어 중심의 감성 사전을 구축하고, 하루 동안에 배포된 뉴스를 이용해 전일 종가 대비 당일 종가의 등락을 예측하는 모델을 제안한다. 기존의 주식 도메인 관련 감성 사전을 구축하는 방식은 주가 등락에 관련된 명사를 중심으로 사전을 구축하는 방식이나 대부분의 명사는 극성 값이 중립인 경우가 많아 극성 값을 추정하기 힘들다는 문제점이 있다. 본 연구에서는 극성 값이 잘 표현되는 서술어 중심의 감성사전을 구축하고 극성 값을 자동 추출하여 주가의 등락을 예측한다. 실험 결과 기존 감성 사전을 통한 주가 예측 방법에 비하여 본 연구에서 제안하는 서술어 중심의 감성 사전을 통한 주가 예측 정확도가 높게 나타났다.

Deep Learning-Based Stock Fluctuation Prediction According to Overseas Indices and Trading Trend by Investors (해외지수와 투자자별 매매 동향에 따른 딥러닝 기반 주가 등락 예측)

  • Kim, Tae Seung;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.367-374
    • /
    • 2021
  • Stock price prediction is a subject of research in various fields such as economy, statistics, computer engineering, etc. In recent years, researches on predicting the movement of stock prices by learning artificial intelligence models from various indicators such as basic indicators and technical indicators have become active. This study proposes a deep learning model that predicts the ups and downs of KOSPI from overseas indices such as S&P500, past KOSPI indices, and trading trends by KOSPI investors. The proposed model extracts a latent variable using a stacked auto-encoder to predict stock price fluctuations, and predicts the fluctuation of the closing price compared to the market price of the day by learning an LSTM suitable for learning time series data from the extracted latent variable to decide to buy or sell based on the value. As a result of comparing the returns and prediction accuracy of the proposed model and the comparative models, the proposed model showed better performance than the comparative models.

Prediction of Rice Prices and Search for a Period of Weather Affecting the Prices Based on a Linear Regression Model (선형회귀모델을 사용한 쌀 가격 예측 및 쌀 가격에 영향을 미치는 날씨의 시기 탐색)

  • Choi, Da-jeong;Seo, Jin-kyeong;Ko, Kwang-Ho;Paik, Juryon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.37-38
    • /
    • 2022
  • 농산물의 산지 가격이나 도매가격이 등락하면, 즉시 또는 일정한 시차 이후에 소비자가격도 등락한다. 본 논문에서는 선형회귀모델을 통해 쌀 가격을 예측하고 쌀 가격에 영향을 미치는 날씨의 시기를 찾아보고자 한다. 이에 따라 KAMIS, 기상자료개방포털, KOSIS에서 수집한 날씨, 생산량, 그리고 소비자물가 등락률 데이터를 이용하여 쌀 가격 예측을 수행하고, 날씨 데이터와 쌀 가격 데이터의 날짜 간격을 두어 날씨가 쌀 가격에 영향을 미치는 시기를 알아보았다. 모델 평가 결과, 2개월 간격을 두고 예측한 RMSE가 164.135로 가장 큰 영향을 미쳤다. 본 연구를 기반으로 향후 다른 농산물의 가격 예측도 가능할 것이며 농산물에 영향을 미치는 변수의 시기도 예측할 수 있을 것으로 기대한다.

  • PDF

Developing Stock Pattern Searching System using Sequence Alignment Algorithm (서열 정렬 알고리즘을 이용한 주가 패턴 탐색 시스템 개발)

  • Kim, Hyong-Jun;Cho, Hwan-Gue
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.6
    • /
    • pp.354-367
    • /
    • 2010
  • There are many methods for analyzing patterns in time series data. Although stock data represents a time series, there are few studies on stock pattern analysis and prediction. Since people believe that stock price changes randomly we cannot predict stock prices using a scientific method. In this paper, we measured the degree of the randomness of stock prices using Kolmogorov complexity, and we showed that there is a strong correlation between the degree and the accuracy of stock price prediction using our semi-global alignment method. We transformed the stock price data to quantized string sequences. Then we measured randomness of stock prices using Kolmogorov complexity of the string sequences. We use KOSPI 690 stock data during 28 years for our experiments and to evaluate our methodology. When a high Kolmogorov complexity, the stock price cannot be predicted, when a low complexity, the stock price can be predicted, but the prediction ratio of stock price changes of interest to investors, is 12% prediction ratio for short-term predictions and a 54% prediction ratio for long-term predictions.

A Study on Index Prediction Method by Binomial Distribution (바이노미얼 확률분포를 이용한 지수 예측 방법에 관한 연구)

  • Ko, Young Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.1636-1638
    • /
    • 2012
  • 주식시장에서 개별 종목의 등락을 예측하는 것은 불가능하다. 미래가 정해져 있다면 그것을 아는 순간 거래는 성립되지 않기 때문이다. 따라서 개별 종목의 등락은 기업의 가치뿐만 아니라 투자참여자의 수급에 의해서 결정되므로 등락 확률은 예측불가인 0.5에 가깝다. 따라서 개별종목의 총합인 종합지수 역시 예측이 불가능해도 확률적인 틀은 제시할 수 있다. 바이노미알 분포를 사용하여 n을 충분히 증가시키면 가우시안 분포가 되고 이를 이동평균선으로 지표화한 Bollinger Band를 이용하는 것이다. 중심선에 480일선을 상하한폭을 $2{\sigma}$, $4{\sigma}$로 하여 그 틀을 제시하고, 이를 주요 종합지수로 검증하였다.

유전자 알고리즘을 활용한 인공지능 예측모형간 결합 기법: 주식시장에의 응용

  • Ahn, Hyeon-Cheol;Lee, Hyeong-Yong
    • 한국경영정보학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.141-148
    • /
    • 2008
  • 각종 인공지능 기법들을 활용하여, 주식시장의 흐름을 예측하려는 연구가 지금까지 많은 인공지능 및 금융공학의 연구자들에 의해 시도되어 왔으며, 그 결과 다양한 인공지능 기법들이 예측 방법론으로 제시되어 왔다. 이런 가운데 서로 다른 예측모형들이 산출하는 예측결과를 종합 - 보완하는 결합기법에 관련된 연구가 90년대 후반부터 오늘날까지 꾸준하게 발표되고 있다. 본 연구 역시 유전자 알고리즘 기반의 새로 인공지능 예측모형간 결합기법을 제시하고 있다. 다만, 기존의 연구모형들이 각 개별모형 결과의 상대적 가중치에 초점을 맞추고 있었다면, 본 연구의 제안모형은 등락을 판단하는데 활용되는 임계치까지 유전자 알고리즘을 이용해 동시에 최적화하도록 설계되어 있다는 점에서 차별화된다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 지난 1998년부터 2007년까지의 KOSPI 지수 등락 예측을 위해 구축된 로지스틱 회귀모형, 인공신경망, SVM모형의 결과들을 제안모형을 이용해 결합하였다. 그 결과, 예측력 향상에 본 연구의 제안모형이 기여 할 수 있음을 확인 할 수 있었다.

  • PDF

An Optimized Combination of π-fuzzy Logic and Support Vector Machine for Stock Market Prediction (주식 시장 예측을 위한 π-퍼지 논리와 SVM의 최적 결합)

  • Dao, Tuanhung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.43-58
    • /
    • 2014
  • As the use of trading systems has increased rapidly, many researchers have become interested in developing effective stock market prediction models using artificial intelligence techniques. Stock market prediction involves multifaceted interactions between market-controlling factors and unknown random processes. A successful stock prediction model achieves the most accurate result from minimum input data with the least complex model. In this research, we develop a combination model of ${\pi}$-fuzzy logic and support vector machine (SVM) models, using a genetic algorithm to optimize the parameters of the SVM and ${\pi}$-fuzzy functions, as well as feature subset selection to improve the performance of stock market prediction. To evaluate the performance of our proposed model, we compare the performance of our model to other comparative models, including the logistic regression, multiple discriminant analysis, classification and regression tree, artificial neural network, SVM, and fuzzy SVM models, with the same data. The results show that our model outperforms all other comparative models in prediction accuracy as well as return on investment.