• Title/Summary/Keyword: 등거리 설정선

Search Result 38, Processing Time 0.026 seconds

Classification of Precipitation Regions Associated with Extratropical Cyclone in Korea (한국(韓國)의 온대저기압성(溫帶低氣壓性) 강수지역(降水地域) 구분(區分))

  • Kim, Sung-Ryul;Yang, Jin-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.1 no.1
    • /
    • pp.45-60
    • /
    • 1995
  • The purpose of this study is to classify the Korean precipitation regions on the basis of the characteristics of extratropical cyclonic precipitation. From now on, extratropical cyclone is called cyclone in short. By using factor analysis and Ward method in cluster analysis, precipitation regions on the basis of the characteristics of cyclonic precipitation are classified The principal data used in this study are daily precipitation records obtained from 60 weather stations of the Korea Meteorological Service during the ten years($1981{\sim}1990$), and weather charts published by the Japan Meteorological Agency. The results obtained in this study are summarized as follows: (1) In the factor analysis using 43 variables which have relation to the extratropical cyclonic precipitations, They are seven factors whose eigenvalues are above 1.0. This explains 86 percent of total amount. The first factor explains the characteristics of precipitation in the middle-west area and its contribution degree has the highest 10.9 percent. (2) According to the cluster analysis method of Ward, extratropical cyclonic precipitation regions are classified seven macro regions(such as Kyungki and North Youngseo, Youngdong and Ullungdo, Hoseo and South Youngseo, Honam and Northwest Chejudo, Southeast Chejudo, North Youngnam, and South Youngnam), 22 meso regions. (3) The characteristics of precipitation regions have relations to the path of cyclone, the direction of air inflow and the strike of mountain ranges. As the conclusion, the Central China Low brings much precipitation in the southern coast and southern area of Korea as moving to the northeastward. The North China Low moves eastward and brings much precipitation in the western area of the Taeback mountain ranges. The probability of extratropical cyclonic precipitation is the lowest in the inland of Yeongnam and the eastern coastal areas which belong to the rain shadow region. Namely, The seasonal and spatial characteristics of precipitation are closely associated with the path of cyclone and the direction of air inflow according to its passage, and the strike of mountain ranges.

  • PDF

Development and Verification of the Automated Cow-Feeding System Driven by AGV (무인이송로봇기반 자동 소사료 공급 시스템 개발 및 검증)

  • Ahn, Sung-Su;Lee, Yong-Chan;Yoo, Ji-Hun;Lee, Yun-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.232-241
    • /
    • 2017
  • This paper presents an automated cow-feeding system based on an AGV and screw conveyor for domestic livestock farms, which are becoming larger and more commercialized. The system includes a hopper module for loading pellet-type mixed feed at the top of the system, a transfer module mounted with a screw conveyor to transfer feed from the hopper module to the outlet module, an outlet module composed of belt conveyors, and an electromagnetic guided driving-type AGV. The weight of the loaded feed is measured by a load cell located under the transfer module. The system reads the feed discharge information stored in RFID tags installed in each cowshed cell, and a predetermined amount of feed is discharged while the AGV is moving. A cow-feed test system was constructed to determine the design parameters of the screw conveyor in the transfer module that determine the feeding capacity. These parameters include the screw's outer diameter, the screw shaft outer diameter, and screw pitch. The parameters were applied to the finalized cow-feed system construction. A DSP-based main controller and cow-feeding algorithm for different scenarios were also developed to control the system. Experimental results confirmed that the system could supply a total of 21 kg of feed uniformly at 420 g/s for a cowshed cell which has 7 cows. The driving distance was 5 m and the speed was 0.1 m/s. Thus, the proposed system could be applied to standardized domestic livestock farms.

Study on Exposure Dose According to Change of Source to Image Distance and Additional Filter Using Abdomen Phantom (복부팬텀을 이용한 SID 변화와 부가필터 유무에 따른 피폭선량에 관한 연구)

  • Kim, Ki-Won;Son, Jin-Hyun
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.407-414
    • /
    • 2016
  • This study is to minimize the patient dose and maintain the image quality according to change of source to image receptor distance and applying additional filter. In this study, we used the DR system, the tissue-equivalent abdomen phantom and the aluminium filter. The exposure conditions were set to 80 kVp using AEC mode. The collimation size was $16{\times}16inch$. The exposure dose were measured 10 times when the SID was changed with 100, 110, 120 and 130 cm, respectively. The pirana 657 for dosimeter was located on center of radiation irradiation. The acquired images were analyzed by using the image J. In the results, the tube current was increased with increasing the SID but ESD was decreased with increasing the SID. The decrease of ESD attribute to use of filter that remove the photon of lower energy. In the histogram results using image J, there were differences between the ESD and the exposure conditions according to change of SID. However, there were not differences in histogram. Therefore, the exposure dose could reduced when set the longer SID. For pediatric exam, the exposure dose could reduced when used the aluminium filter.

CT Simulation Technique for Craniospinal Irradiation in Supine Position (전산화단층촬영모의치료장치를 이용한 배와위 두개척수 방사선치료 계획)

  • Lee, Suk;Kim, Yong-Bae;Kwon, Soo-Il;Chu, Sung-Sil;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.165-171
    • /
    • 2002
  • Purpose : In order to perform craniospinal irradiation (CSI) in the supine position on patients who are unable to lie in the prone position, a new simulation technique using a CT simulator was developed and its availability was evaluated. Materials and Method : A CT simulator and a 3-D conformal treatment planning system were used to develop CSI in the supine position. The head and neck were immobilized with a thermoplastic mask in the supine position and the entire body was immobilized with a Vac-Loc. A volumetrie image was then obtained using the CT simulator. In order to improve the reproducibility of the patients' setup, datum lines and points were marked on the head and the body. Virtual fluoroscopy was peformed with the removal of visual obstacles such as the treatment table or the immobilization devices. After the virtual simulation, the treatment isocenters of each field were marked on the body and the immobilization devices at the conventional simulation room. Each treatment field was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR)/digitally composite radiography (DCR) images from the virtual simulation. The port verification films from the first treatment were also compared with the DRR/DCR images for a geometrical verification. Results : CSI in the supine position was successfully peformed in 9 patients. It required less than 20 minutes to construct the immobilization device and to obtain the whole body volumetric images. This made it possible to not only reduce the patients' inconvenience, but also to eliminate the position change variables during the long conventional simulation process. In addition, by obtaining the CT volumetric image, critical organs, such as the eyeballs and spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. The differences between the DRRs and the portal films were less than 3 mm in the vertebral contour. Conclusion : CSI in the supine position is feasible in patients who cannot lie on prone position, such as pediatric patienta under the age of 4 years, patients with a poor general condition, or patients with a tracheostomy.

3-D Conformal Radiotherapy for CNS Using CT Simulation (입체조준장치를 이용한 중추신경계의 방사선 입체조형치료 계획)

  • 추성실;조광환;이창걸
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • Purpose : A new virtual simulation technique for craniospinal irradiation (CSI) that uses a CT-simulator was developed to improve the accuracy of field and shielding placement as well as patient positioning. Materials and Methods : A CT simulator (CT-SIM) and a 3-D conformal radiation treatment planning system (3D-CRT) were used to develop CSI. The head and neck were immobilized with a thermoplastic mask while the rest of the body was immobilized with a Vac-Loc. A volumetric image was then obtained with the CT simulator. In order to improve the reproducibility of the setup, datum lines and points were marked on the head and body. Virtual fluoroscopy was performed with the removal of visual obstacles, such as the treatment table or immobilization devices. After virtual simulation, the treatment isocenters of each field were marked on the body and on the immobilization devices at the conventional simulation room. Each treatment fields was confirmed by comparing the fluoroscopy images with the digitally reconstructed radiography (DRR) and digitally composited radiography (DCR) images from virtual simulation. Port verification films from the first treatment were also compared with the DRR/DCR images for geometric verification. Results : We successfully performed virtual simulations on 11 CSI patients by CT-SIM. It took less than 20 minutes to affix the immobilization devices and to obtain the volumetric images of the entire body. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with simulation films to within 5 mm. This not only reducee inconveniences to the patients, but also eliminated position-shift variables attendant during the long conventional simulation process. In addition, by obtaining CT volumetric image, critical organs, such as the eyes and the spinal cord, were better defined, and the accuracy of the port designs and shielding was improved. Differences between the DRRs and the portal films were less than 3 m in the vertebral contour. Conclusion : Our analysis showed that CT simulation of craniospinal fields was accurate. In addition, CT simulation reduced the duration of the patient's immobility. During the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization by standard protocol for craniospinal irradiation.

  • PDF

Transmission Dose Estimation Algorithm for Tissue Deficit (조직 결손에 대한 투과선량 계산 알고리즘 보정)

  • Yun Hyong Geun;Chie Eui Kyu;Huh Soon Nyung;Lee Hyoung Koo;Woo Hong Gyun;Shin Kyo Chul;Ha Sung Whan
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.186-192
    • /
    • 2002
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry. In this study, previous algorithm for estimation of transmission dose was modified for use in cases with tissue deficit. Materials and Methods : The beam data was measured with flat solid phantom in various conditions of tissue deficit. New algorithm for correction of transmission dose for tissue deficit was developed by physical reasoning. The algorithm was tested in experimental settings with irregular contours mimicking breast cancer patients using multiple sheets of solid phantoms. Results : The correction algorithm for tissue deficit could accurately reflect the effect of tissue deficit with errors within ${\pm}1.0\%$ in most situations and within ${\pm}3.0\%$ in experimental settings with irregular contours mimicking breast cancer treatment set-up. Conclusion : Developed algorithm could accurately reflect the effect of tissue deficit and irregularly shaped body contour on transmission dosimetry.

Protection for sea-water intrusion by geophysical prospecting & GIS (해수침투 방지를 위한 물리검층과 GIS 활용방안)

  • Han Kyu-Eon;Yi Sang-Sun;Jeong Cha-Youn
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2000.09a
    • /
    • pp.54-69
    • /
    • 2000
  • There are groundwater trouble by high-salinity yield inducing sea-water intrusion in Cheju Island. It is used groundwater-GIS(Well-lnfo) in the maintenance and management of groundwater in Cheju Island to grasp groundwater trouble area and cause of high-salinity yield. For 16 wells certain to yield high-salinity, we logged specific electrical conductivity(EC) and tried to get hold of freshwater and saltwater relationship. As result of distribution of $Cl^-$ by depth, it is showed up groundwater trouble by high-salinity yield in the east coastal area and the partly north coastal area. The reason of high-salinity groundwater yield are low-groundwater level by the structure of geology and low-hydraulic gradient etc. There is necessity for management to development and use of groundwater in the high-salinity area, special management area.

  • PDF

Effects of Change in Patient Position on Radiation Dose to Surrounding Organs During Chest Lateral Radiography with Auto Exposure Control Mode (자동노출제어장치를 적용한 흉부 측면 방사선검사 시 환자 위치 변화가 주변 장기의 선량에 미치는 영향)

  • Seung-Uk Kim;Cheong-Hwan Lim;Young-Cheol Joo;Sin-Young Yu
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.903-909
    • /
    • 2023
  • The purpose of this study is to compare and analyze the effect of changes in the patient's central position on the exposure dose and image quality of surrounding organs during a chest lateral examination using an Auto Exposure Control(AEC). The experiment was conducted on a human body phantom. A needle was attached to the lower part of the center of the coronal plane of the phantom, and a lead ruler was attached to the lower part of the detector so that the 50 cm point was located at the lower center of the AEC ion chamber. The exposure conditions were 125 kVp, 320 mA, the distance between the source and the image receptor was 180 cm, and the exposure field size was 14 × 17 inches. Only one AEC ion chamber was used at the bottom center, and the density was set to '0' and sensitivity to 'Middle', and the central X-ray was incident vertically toward the 6th thoracic vertebra. With AEC mode applied, the 50 cm point of the needle and lead ruler were aligned and the phantom was moved 5 cm toward the stomach (F5) and 5 cm toward the back (B5), and the dose factor was analyzed by measuring ESD. The ESD of the thyroid gland according to the change in patient center position was 232.60±2.20 μGy for Center, 231.22±1.53 μGy for F5, and 184.37±1.19 μGy for B5, and the ESD of the breast was 288.54±3.03 μGy for Center, F5 was 260.97±1.93 μGy, B5 was 229.80±1.62 μGy, and the ESD of the center of the lung was 337.02±3.25 μGy for Center, F5 was 336.09±2.29 μGy, and B5 was 261.76±1.68 μGy. As a result of comparing the average values of dose factors between each group, the difference in average values was statistically significant (p<0.01), and each group appeared to be independent. As a result of the study, there was no significant difference in the dose to the thyroid, breast, and center of the lung according to the change in the patient's central position, except for the breast (10%) when the patient moved forward about 5 cm. However, movement of about 5 cm posteriorly resulted in an average dose reduction of 23.7%. Additionally, when the patient's central position was moved to the rear, image quality deteriorated.