• Title/Summary/Keyword: 등가평판모델

Search Result 32, Processing Time 0.031 seconds

Simplified stress analysis of perforated plates using homogenization technique (균질화기법을 이용한 다공평판의 단순화된 응력해석)

  • 이진희
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.51-57
    • /
    • 1995
  • A simplified stress analysis of perforated plates was carried out using homogenization technique. Homogenization technique, which introduced miroscale expansion in the standard finite element method, reconstructed the plate with regularly placed holes into a set of macroscale and microscale models. The microscale model helped compute homogenized material constants of the unit cell, which were used to compute macroscale displacements in the macroscale model. Also it was possible to compute the stress field of the plate using the microscale model. It was found that reasonable equivalent material constants were computed and that the required degrees of freedom was drastically reduced when homogenization technique was employed in the stress analyses. The microscale modeling in the homogenization technique provided a useful concept of pre- and post-processing in the stress analysis of perforated plates.

  • PDF

Prediction Model of the Sound Transmission Loss of Honeycomb Panels for Railway Vehicles (철도차량용 허니콤재의 차음성능 예측모델)

  • Kim, Seock-Hyun;Paek, In-Su;Lee, Hyun-Woo;Kim, Jeong-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.5
    • /
    • pp.465-470
    • /
    • 2008
  • Sound transmission characteristics are investigated on the honeycomb panels used for railway vehicles. Equivalent orthotropic plate model and equivalent mass law are applied to predict the sound transmission loss (STL) of the honeycomb panels. The predicted values of the STL are compared with the measured values. The reliability and the limitation of the prediction models are investigated. Coincidence effect and local resonance effect on STL are considered. The result of the study shows that the equivalent orthotropic plate model can be used as a good prediction model, if the local resonance frequency is properly applied. finally, ways to improve the severe STL drop by local resonance are proposed and the effect on the sound insulation performance is analysed.

Equivalent Plate Model and Acoustic Power Radiation of the Corrugated Panel Structures for High Speed Train (고속전철용 주름판넬구조의 등가평판모델 및 방사소음)

  • 장준호;이상윤;홍성철;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.3
    • /
    • pp.26-35
    • /
    • 1999
  • The acoustic power reduction method can be used to design a quiet structure. To calculate the acoustic power radiated from a vibrating structure, the dynamic responses have to be determined. It is not easy to analyse the structure composed of the corrugated panels because of the structural complexity and the long analysing time. To make up for these defects, the equivalent orthotropic panel is presented. Also the acoustic power prediction method of the vibrating structures is proposed. As examples, the equivalent material properties of the corrugated plates are obtained and the acoustic powers of the floor structure are calculated at several frequency regions for the Korean High Speed Train.

  • PDF

An Equivalent Plate Model for the High-Frequency Dynamic Characteristics of Cylindrical Shells (원통형셸의 초고주파 동적특성을 위한 등가평판모델)

  • Lee, Joon-Keun;Lee, U-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.108-113
    • /
    • 1999
  • For cylindrical shells, the closed-form solutions are confined to the specific boundary and/or loading conditions. Though the finite element method is certainly a powerful solution approach for the structural dynamics problems, it has been well known to provide the solution reliable only in the low frequency region due to the inherent high sensitivities of structual and numerical modeling errors. Instead, the spectral element method has been proved to provide accurate dynamic characteristics of a structure even at the ultrasonic frequency region. Since the wave characteristic of a cylindrical shell becomes identical to that fo a flat plate as the frequency increases, an equivalent plate model (EPM) representing the high-frequency dynamic characteristics of the cylindrical shell is introduced herein. The EPM-based spectral element analysis solutions are compared with the known analytical solutions for the cylindrical shells to confirm the validity of the present modeling approach.

  • PDF

Equivalent Continuum Modeling Methods for Flat Corrugated Panels (평판형 주름판넬에 대한 등가 연속체 모델링기법)

  • 이상윤;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.43-50
    • /
    • 2000
  • The corrugated panels are the prime candidate structure for the floor, roof and wall of Korean high speed train. The equivalent continuum modeling approach panels can be used for the efficient design and evaluation of their structural characteristics. The equivalent continuum models, derived from the true complex corrugated panels, should have the same structural behavior as the original structures have. This paper briefly reviews three representative continuum modeling methods: the static analysis method and two plate-models based on modal analysis methods (MAM). These methods are evaluated through some numerical examples by comparing the natural frequencies and static deflections. It is observed that the plate-model based on Rayleigh-Ritz method seems to provide the best results when used in conjunction with the cantilever-type boundary conditions. The equivalent elastic constants of various corrugated panels, depending on the changes in their configurations, are tabulated for efficient use in structural design.

  • PDF

Numerical Experiment for a Strain Energy Equivalence Principle (SEEP)-based Continuum Damage Model (탄성변형에너지 등가원리 기반 연속체 손상모델에 대한 수치실험)

  • Youn, Deok-Ki;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.31-34
    • /
    • 2006
  • A new continuum damage theory (CDT) has been proposed by Lee et al. (1996) based on the SEEP. The CDT has the apparent advantage over the other related theories because the complete constitutive law can be readily derived by simply replacing the virgin elastic stiffness with the effective orthotropic elastic stiffness obtained by using the proposed continuum damage theory. In this paper, the CDT is evaluated by the numerical experiment comparing the mode shapes and natural frequencies of a square plate containing a small line-through crack with those of the same plate with a damaged site replaced with the effective orthotropic elastic stiffness computed by using the CDT.

  • PDF

Partial Layerwise-to-ESL Coupling Elements for Multiple Model Analysis (다중모델 해석을 위한 부분층별-등가단층 결합요소)

  • Shin, Young-Sik;Woo, Kwang-Sung;Ahn, Jae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.267-275
    • /
    • 2009
  • This paper presents the p-convergent coupling element on the basis of the ESSE(equivalent single layer shell element) and the PLLE(partial-linear layerwise element) to analyze laminated composite plates. The ESSE is formulated by the degenerated shell theory, on the other hand, the assumption of the PLLE is piecewise linear variation of the in-plane displacement and a constant value of lateral displacement across the thickness. The proposed finite element model is based on p-convergence approach. The integrals of Legendre polynomials and Gauss-Lobatto technique are chosen to interpolate displacement fields and to implement numerical quadrature, respectively. This study has been focused on the verification of p-convergent element. For this purpose, various finite element multiple models associated with the combination of ESSE and PLLE elements are tested to show numerical stability. The simple examples such as a cantilever beam subjected vertical load and a plate with tension are adopted to evaluate the performance of proposed element.

A Study on Continuum Modeling of Large Platelike Lattice Structures (거대한 평판형 격자구조물의 연속체 모델링에 관한 연구)

  • 이우식;신현재
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.105-112
    • /
    • 1990
  • A rational and straightforward method is introduced for developing continuum models of large platelike periodic lattice structures based on energy equivalence, The procedure for developing continuum models involves using existing finite element matrices in calculating strain and kinetic energies of a repeating cell. The equivalent continuum plate properties are obtained from the direct comparison of the reduced stiffness and mass matrices for continuum and lattice plates. Numerical results prove that the method developed in this paper shows very good agreement with other well-recognized methods.

  • PDF

Study on the General Theory of Stiffened Plates (補剛平板의 一般理論 硏究)

  • 김천욱;원종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.287-295
    • /
    • 1987
  • The general equation of equilibrium is presented for a stiffened plate on which the stiffeners having rectangular cross-sections are attached by one or both sides with arbitrarily angles. The principle of minimum potential energy is applied using the concept of adjusted-centroid to derive the equilibrium equation for the stiffened plate. Equivalent rigidities in the present theory are in good agreement with the experiments by the vibration method.

p-Version Finite Element Analysis of Elasto-Plastic Cracked Plates Including Strain Hardening Effects (변형률 경화효과를 고려한 탄소성 균열판의 p-Version 유한요소해석)

  • 우광성;홍종현;윤영필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.537-549
    • /
    • 1999
  • 선형탄성 파괴해석은 균열을 갖는 변형률 경화재료의 파괴거동을 예측하는데 불충분하기 때문에 최근에는 균열 선단 부에서 대규모 소성 역을 갖는 균열 체에 적용할 수 있는 많은 파괴역학개념이 제안되고 있다. 따라서, 본 연구에서는 대규모항복 조건하의 연성파괴를 보이는 평판을 정확하게 해석할 수 있는 새로운 유한요소모델을 제시하고자 한다. 균열 선단 부의 응력 장을 정의하는데 가장 지배적인 파괴매개변수인 J-적분 값과 소성 역의 크기 및 형상을 J-적분법과 등가영역적분법을 통해 파괴거동을 설명할 수 있도록 증분소성이론에 기초를 둔 p-version 유한요소해석이 채택되었다. 제안된 유한요소모델에 의한 수치해석결과는 이론 해와 h-version 유한요소해석과 비교되었다.

  • PDF