• Title/Summary/Keyword: 등가정적해석법

Search Result 49, Processing Time 0.022 seconds

Evaluation of the Application and Analysis Method at Seismic Design of Dam (댐의 내진설계시 해석방법과 그 적용성 평가)

  • Hwang, Seong-Chun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4239-4249
    • /
    • 2011
  • In the country with frequent earthquakes like Japan, resistance to earthquake is assessed on the basis that Dam body's Face slab is destroyed by concentrated stress. In our country this kind of modeling and analysis is not yet definitely established. This paper performed pseudo static analysis and dynamic analysis for CFRD and evaluated reliability with the results of Shaking Table Test. The Seismic coefficient method, modified seismic coefficient method, Newmark method of Pseudo-static analysis and frequency domain response analysis, time domain history analysis of dinamic analysis were used. The analysis results were differ between analysis method, but the trends of acceleration and displacement were good agreement with the results of shaking table test.

The Seismic Design of Water Extinguishing Piping Systems for Equivalent Static Analysis Method (등가정적해석법에 의한 수계 파이프 시스템의 내진설계)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.100-105
    • /
    • 2012
  • In this study, seismic design in pipeline of pressurized water supply system of water extinguishing system has been carried out. This study described a generation of artificial earthquake wave compatible with seismic design spectrum, and also determined equivalent static loads to analyzed the response spectra acceleration by the simulated earthquake motion. This study constructed powerful engineering base for seismic design, and presented equivalent static analysis method for seismic design of water and gas extinguishing piping system. Also, this study readied basis that can apply seismic design and performance estimation of fire fighting system as well as pipeline of water extinguishing system from result of this research. Hereafter, if additional research by earthquake magnitude and ground kind is approached, reliance elevation, safety raising and performance based design of fire fighting system see to achieve.

The Properties of a Nonlinear Direct Spectrum Method for Estimating the Seismic Performance (내진성능평가를 위한 비선형 직접스펙트럼법의 특성)

  • 강병두;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.65-73
    • /
    • 2002
  • It has been recognized that the damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear time history analyses, monotonic static nonlinear analyses, or equivalent static analyses with simulated nonlinear influences. Some building codes propose the capacity spectrum method based on the nonlinear static analysis(pushover analysis) to determine the earthquake-induced demand given by the structure pushover curve. These procedures are conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for MDF(multi degree of freedom) systems. The purpose of this paper is to investigate the accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters. The conclusions of this study are as follows; 1) NDSM is considered as practical method because the peak deformations of nonlinear system of MDF by NDSM are almost equal to the results of nonlinear time history analysis(NTHA) for various ground motions. 2) When the results of NDSM are compared with those of NTHA. mean of errors is the smallest in case of post-yielding stiffness factor 0.1, static force by MAD(modal adaptive distribution) and unloading stiffness degradation factor 0.2~0.3.

The Consideration of the Necessity of Seismic Retrofitting for Existing High Speed Rail Bridge in Accordance with Design Guidelines Improvements (설계기준 개선에 따른 기존 고속철도 교량 내진보강 필요성 고찰)

  • Kim, Do-Kyoun;Jang, Han-Teak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.445-453
    • /
    • 2013
  • This paper was calculated the earthquake load using ELFP(Equivalent Lateral Force Procedure) and RSA(Response Spectrum Analysis) for PSC Box Girder representative bridges by the Phase of KTX designed by ELFP and verified the difference of these analyses. It have been modeled 3 dimensional FE model of 5 bridges using a commercial FEM program for the comparison of these analyses using a commercial FEM program and were compared the earthquake load. It has been to confirm the increase of the difference ELFP of RSA calculated to seismic ground acceleration according to the ground condition and natural period. It is mean that the necessity of seismic reinforcement due to the application of a larger of earthquake load than designed earthquake load form the seismic performance evaluation result according to the difference of calculated earthquake loads.

Propose of Capacity Spectrum Method by Nonlinear Earthquake Response Analysis (질점계 비선형 지진응답해석에 의한 구조물의 역량스펙트럼 제안)

  • You, Jin-Sun;Yang, Won-Jik;Yi, Waon-Ho;Kim, Hyoung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.501-508
    • /
    • 2014
  • In this paper, a method on deducing the capacity spectrum based on nonlinear earthquake response analysis will be introduced. Damage assessment of general building draws the capacity spectrum through the Push-over analysis and the intersection point of capacity spectrum and demand spectrum is seen as performance point. Push-over analysis is the way to perform static analysis by using the equivalent static load changed from the effect of earthquake and predict the behavior of structures by earthquake. But, this method can not be taken into account in the effects of higher mode and the dynamic characteristic. Therefore, in order to calculate the capacity spectrum under dynamic properties of building. A capacity spectrum from going ahead with the nonlinear earthquake response analysis is suggested.

The Evaluation of the Structural Integrity of Bellows Globe Valve for Nuclear Power (원자력 발전소용 벨로우즈 글로브 밸브에 대한 구조 건전성 평가)

  • Chung, Chul-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1034-1039
    • /
    • 2006
  • The purpose of this paper is to evaluate the structural integrity of the Class 1500 Bellows Seal 3 inch globe valve classified as seismic category IIA. The finite element analysis program, ANSYS, Version 10.0, is used to perform both a modal frequency analysis and an equivalent static stress analysis of the subject valve modeling. The modal frequency analysis results show the fundamental natural frequency is greater than 33 Hz. Therefore the equivalent static stress analysis is performed using the seismic acceleration values. The stresses resulted from various loadings and their combinations are evaluated based on the structural acceptance criteria of the ASME Code. The stresses in the glove valve due to the seismic loadings are within the allowable limits. It is concluded that the globe valve structure is maintaining the structural integrity fur the seismic loading conditions.

  • PDF

Optimization of the Television Packing System Using Equivalent Static Loads (등가정하중법을 이용한 텔레비전 포장재의 구조최적설계)

  • Lee, Youngmyung;Jung, Ui-Jin;Park, Gyung-Jin;Han, In-Sik;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • A nonlinear dynamic response structural optimization process is proposed for the television (TV) packing system that protects the damage from a drop situation using the equivalent static loads (ESLs). Topology optimization using ESLs is carried out for conceptual design, and shape optimization using stress ESLs for a virtual model is performed for detailed design. Stress ESLs are static loads that generate the same displacement as well as the stress fields of linear static analysis as those of nonlinear dynamic analysis. Thus, the response of nonlinear dynamic analysis can be utilized as a constraint in the linear static structural optimization. An actual example is solved to validate the process. The drop test of a television packaging system is analyzed by LS-DYNA, and NASTRAN is used for optimization.

The development for the determining large-scale steady-state wind penetration using the continuation-power flow (연속조류계산법을 이용한 대규모 풍력 발전의 정적계통 투입량 결정 알고리즘 개발)

  • Kim, Ji-Hun;Moon, Ji-Hye;Lee, Hwan-Ik;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.234-235
    • /
    • 2011
  • 계통에 대규모의 풍력발전의 투입양이 증가함에 따라 실효치 기반의 해석이 필요하다. 계통 내에 무효전력 불균형에 의한 풍력 발전의 한계량을 결정하기 위하여 연속조류법을 이용한 한계량 선정 알고리즘을 수립하였다. 이를 위하여 풍력발전단지를 등가화하고, 타입에 따른 풍력발전기의 정적 모델을 수립하였다.

  • PDF

A Study on the Equivalent Static Wind Load Estimation of Large Span Roofs (대스팬 지붕구조물의 등가정적 풍하중 산정에 관한 연구)

  • Lee, Myung-Ho;Kim, Ji-Young;Kim, Dae-Young;Kim, Sang-Dae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.83-90
    • /
    • 2006
  • The GF(Gust Factor) method is usually used as a method to evaluate equivalent static wind loads for general structures. The GF method is performed on the assumption that the shape of the equivalent static wind load profile is typically similar to that of mean wind loads. The shape of fluctuating wind loads could be quite different with that of the mean wind loads in case of large-span structures. So, the effect of higher modes as well as first mode must be considered to evaluate the wind loads. In this study, the ACS (Advanced Conditional Sampling) method is suggested to evaluate of equivalent static wind loads after investigating about GF and LRC method. The An method ran derive effective static wind loads by combining wind pressures and inertia forces of a structure chosen at a maximum load effect. The maximum load effect is assessed with the time history analysis using pressure data measured in wind tunnel tests. Equivalent static wind loads evaluated using ACS, GF, and LRC methods are compared to verify the effectiveness of ACS method.

  • PDF

Evaluation of Nonlinear Response for Moment Resisting Reinforced Concrete Frames Based on Equivalent SDOF System (등가 1 자유도계에 의한 철근콘크리트 모멘트 골조구조의 비선형 지진응답 평가법의 검토)

  • 송호산;전대한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • To evaluate the seismic performance of multistory building structures use an equivalent SDOF model to represent the resistance of the structure to deformation as it respond in its predominant mode. This paper presents a method of converting a MDOF system into an equivalent SDOF model. The principal objective of this investigation is to evaluate appropriateness of converting method through perform nonlinear time history analysis of a multistory building structures and an equivalent SDOF model. The hysteresis rules to be used an equivalent SDOF model is obtained from the pushover analysis. Comparing the peak inelastic response of a moment resisting reinforced concrete frames and an equivalent SDOF model, the adequacy and the validity of the converting method is verified. The conclusion of this study is following; A method of converting a MDOF system into an equivalent SDOF model through the nonlinear time history response analysis is valid. The representative lateral displacement of a moment resisting reinforced concrete frames is close to the height of the first modal participation vector \ulcorner$_1{\beta}$${_1{\mu}}=1$. It can be found that the hysteresis rule of an equivalent SDOF model have influence on the time history response. Therefore, it necessary for selecting hysteresis rules to consider hysteresis characteristics of a moment resisting reinforced concrete frames.