• Title/Summary/Keyword: 등가소음높이

Search Result 2, Processing Time 0.015 seconds

Microphone Array Design for Measurement of the Equivalent Source Height of Vehicle Noise (차량소음의 등가소음높이 측정을 위한 마이크로폰 배열 설계)

  • 윤종락;배민자
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.197-206
    • /
    • 1995
  • Microphone array is designed to measure the equivalent source height of vehicle noise. The equivalent source position is defined for an arbirary distribution of acoustic sources above a perfectly reflecting plane and a microphone array for its measurement is developed. The normalized errors of the measured equivalent source heights are defined including the effects of background noise, the geometric near field, and source size. Normalized errors of the measured source heights obtained by a nemerical simulation for each parameter lead to optimization of the microphone spacing and to the design of an array which gives the equivalent source height as a function of frequency. The performance of the designed array is verified using the stationary loudspeaker experiments.

  • PDF

Finite Element Analysis for the Safety Assessment of Take-out Robot (취출로봇의 안전성 평가를 위한 유한요소해석)

  • Hong, Hee-Rok;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1241-1246
    • /
    • 2014
  • Take-out robots used for handling of the plastic parts manufactured with the injection mold are usually the gantry type that consists of long and thin links. In this study, we want to evaluate the safety of the take-out Robot structure through finite element analysis. The take-out Robot is automated robot to transport from one location to another in the molded article. The take-out Robot structure has a 380 kilogram weight, a 1300mm width, a 670.5mm depth and a 670mm height. It confirms the equivalent stress and the deformation of the load and its own weight through weight analysis. It looks for the natural frequency of the take-out robot through modal analysis. It confirms the acceleration, the normal stress and the deformation about the natural frequency of the take-out robot through response analysis. Also It repeats the analysis by changing the structure of the take-out robot, to confirm the results and it is determined whether the safety of the structure. These analysis results are effectively used to reduce the vibration of the take-out robot.