• Title/Summary/Keyword: 드릴링 버

Search Result 7, Processing Time 0.02 seconds

Acoustic Emission Monitoring of Drilling Burr Formation Using Wavelet Transform and an Artificial Neural Network (웨이브렛 변환과 신경망 알고리즘을 이용한 드릴링 버 생성 음향방출 모니터링)

  • Lee Seoung Hwan;Kim Tae Eun;Raa Kwang Youel
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.37-43
    • /
    • 2005
  • Real time monitoring of exit burr formation is critical in manufacturing automation. In this paper, acoustic emission (AE) was used to detect the burr formation during drilling. By using wavelet transform (WT), AE data were compressed without unnecessary details. Then the transformed data were used as selected features (inputs) of a back-propagation artificial neural net (ANN). In order to validate the in process AE monitoring system, both WT-based ANN and cutting condition (cutting speed, feed, drill diameter, etc.) based ANN outputs were compared with experimental data.

A Study on the Burr Minimization of Drilling Process by Optimal Velocity Profile Tracking (이상적 속도 궤적을 이용한 드릴링 공정의 버 최소화에 관한 연구)

  • Park, Min-Suk;Jeon, Do-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.116-121
    • /
    • 1999
  • At the exit stage of drilling, the burr generates and deburring process is required to remove it. Since the additional process reduces productivity, a burr minimization technique is necessary in the servo system of drilling machines. In this research, cutting force is modelled with tool geometry and the optimal velocity profile with which the desired cutting force maintains is generated to minimize burr. Experiments show that the proposed velocity profile tracking effectively minimizes burr compared to the constant velocity feed.

  • PDF

Prediction of Burr Size in Micro-drilling (마이크로드릴 가공 시 버 크기의 예측)

  • 이성환;권성용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.71-78
    • /
    • 2003
  • The exit burrs in the micro-drilling of precision miniature holes are of interest, especially for ductile materials. As burrs from this process can be difficult to remove, it is important to acquire the way of predicting burr types as well as optimal cutting conditions which minimize the burrs. In this paper, an artificial neural network was used for the prediction of burr formation in micro-drilling. First, the influence of cutting conditions including cutting speed, feed and drill diameter on the exit burr characteristics, such as burr size and type, were observed and analyzed. Then. the burr types were classified by using the influential experimental data as input parameters to the neural nets.

A Study on the Drilling Performance of the Assembly Machine for the an Aircraft's Main Wings (항공기 주익 조립 장비의 드릴링 성능에 관한 연구)

  • Hong, Seong-Min;Park, Dae-Hun;Han, Sung-Gil;Song, Chul-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • Recently, the manufacturing market for low-cost airlines has led to an increase in aircraft demand. Most processes in the production of these aircrafts are manual such as drilling, sealing, and swaging. A drilling and riveting machine is a numerical-control based equipment that automatically performs drilling, sealing, and swaging operations. The accuracy of the drilled holes and the exit burr length has a significant impact on the quality of the aircraft wing during assembly. This study was conducted to identify the conditions necessary to maintain a uniform quality by controlling the rotation speed of the spindle, which directly affects the hole diameter and the quality of the exit burr.

A study on burr generation of laser micro-hole drilling for copper foil (Copper 박막의 레이저 미세홀 가공이 버 생성에 관한 연구)

  • Oh J.Y.;Shin B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.873-877
    • /
    • 2005
  • The burr of micro drilling and micro cutting on thin metal film is a major obstacle to mass production for micro PCB boards in micro technologies of personal computing and telecom explosion. As the burr affects on the assembling process, it is necessary to study continuously on control or elimination of the burr. In order to get higher valued products, it is also needed to competitive techniques with the high resolution. In this paper, we studied experimentally the burr generation that when it is processed on the copper foil by laser in micro-hole machining. Unlike mechanical machining the burr produced on substrate is a resultants of melt and re-solidification of a melten metal which was heated and treated by laser. And higher laser energy increases the size of burr. Therefor in micro-drilling with laser, it is difficult to reduce the effects of burr for very thin metal sheets. We investigated the stale of the burr and analyzed the laser ablation Cu micro machining with respect to laser intensity and processing time.

  • PDF

Determination of Cutting Conditions for an Efficient Deburring Process Using a New Deburring Tool (새로운 디버링 공구를 이용한 드릴링 버의 효율적 제거를 위한 가공조건 선정)

  • Bae, Jun-Kyung;Park, Ha-Young;Kwon, Byeong-Chan;Ko, Sung-Lim
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.109-117
    • /
    • 2016
  • For efficient deburring of burrs that form inside mechanical parts after drilling, new special deburring tool was developed specifically for the burr found at intersecting holes. In this paper, the process for finding ideal cutting conditions has been carried out to identify the efficient performance of deburring using a new tool. The burrs at the entrance and exit surface were analyzed for efficient removal. The surface roughness after deburring was also reviewed for better performance. In addition, the influence of the feed rate on deburring quality was analyzed for improved productivity. Through this process, a new deburring tool can be applied effectively to remove burrs formed at intersecting holes.

Comparison of Machining Defects by Cutting Condition in Hybird FRP Drilling (유리탄소섬유 하이브리드 복합재의 절삭 조건에 따른 가공 결함 비교)

  • Baek, Jong-Hyun;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.12-20
    • /
    • 2022
  • Delamination and burr defects are important problems in drilling fiber reinforced plastics. A method for measuring FRP drilling defects has been studied. Delamination and burr factors were defined as the relative length or area. Using these factors, the effects of tool shape and drilling conditions on delamination and burr were studied. In this study, the defects that occur when drilling a glass-carbon fiber hybrid composite were compared in terms of three factors. In the glass-carbon fiber hybrid composite, the effects of the feed rate and tool point angle on the delamination and burr factors were similar to those in previous studies. The diameter of the tool did not affect the defect factor. A circular burr was generated in a drill tool with a point angle of 184°, and a relatively small deburring factor was observed compared with a tool with a point angle of 140°.