• Title/Summary/Keyword: 두 단계 해상도

Search Result 74, Processing Time 0.025 seconds

Automatic Extraction Method of Control Point Based on Geospatial Web Service (지리공간 웹 서비스 기반의 기준점 자동추출 기법 연구)

  • Lee, Young Rim
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.2
    • /
    • pp.17-24
    • /
    • 2014
  • This paper proposes an automatic extraction method of control point based on Geospatial Web Service. The proposed method consists of 3 steps. 1) The first step is to acquires reference data using the Geospatial Web Service. 2) The second step is to finds candidate control points in reference data and the target image by SURF algorithm. 3) By using RANSAC algorithm, the final step is to filters the correct matching points of candidate control points as final control points. By using the Geospatial Web Service, the proposed method increases operation convenience, and has the more extensible because of following the OGC Standard. The proposed method has been tested for SPOT-1, SPOT-5, IKONOS satellite images and has been used military standard data as reference data. The proposed method yielded a uniform accuracy under RMSE 5 pixel. The experimental results proved the capabilities of continuous improvement in accuracy depending on the resolution of target image, and showed the full potential of the proposed method for military purpose.

Image Enhancement Techniques for MPEG-4 (MPEG-4 영상의 화질 개선에 관한 연구)

  • 김태근;신정호;백준기
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.169-181
    • /
    • 1997
  • In this paper, we propose and discuss about image enhancement techniques for MPEG-4. which represents very low bit-rate, content-based. and object-based hierarchical audio-visual coding standard. The proposed enhancement technique removes undesired artifacts arising in the compression procedure and increase resolution in both spatial and temporal domains. In order to remove undesired artifacts. we divide the MPEG-4 video algorithm in two parts: MPEG-2 like part and the new part. For removing artifacts caused by the first part. we adopt the conventional blocking artifacts algorithm developed for MPEG-2. On the other hand for removing artifacts caused by the second part. we provide a new degradation model. and propose the corresponding image restoration method. For increasing resolution of the MPEG-4 images, we propose a general framework of multichannel image interpolation process. which includes both spatial and temporal interpolations. As the MPEG-4 standard is under development. various sophisticated techniques are considered. but research on image enhancement techniques is relatively underestimated. By this reason. additional image enhancement techniques will become very important issue in realization phase of MPEG-4.

  • PDF

Multiresolution-Based Active Contour Model Using Genetic Algorithm (유전자 알고리즘을 이용한 다해상도 기반의 활성 윤곽선 모델)

  • Lee, Ki-Hwan;Yoo, Hyun-Jung;Kim, Hyun-Jun;Kim, Tae-Yong;Cho, Seok-Je
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.385-386
    • /
    • 2009
  • 활성 윤곽선 모델은 스네이크 모델이라고도 하며 영상에서 물체의 경계를 검출하기위한 효과적인 방법으로 사용되고 있다. 본 논문에서는 초기 윤곽선 문제와 효과적인 경계선 검출을 위해 다해상도 기반의 유전자 알고리즘을 이용한 활성 윤곽선 모델을 제안한다. 입력영상의 해상도를 영상 피마리드 기법으로 저해상도로 축소시키고 초기 윤곽선을 설정한다. 설정된 윤곽선상의 연속된 두 좌표를 유전인자로 선택하고, 유전 연산자를 적용하여 물체의 경계를 찾아간다. 경계가 검출된 저해상도 영상을 단계적으로 확대하여, 보간될 영역의 국부적 활성 윤곽선 에너지를 계산하여 최소 에너지를 갖는 위치에 새로운 윤곽선 좌표를 삽입하여 경계를 형성한다. 제안된 방법은 초기 윤곽선의 위치에 상관없이 경계선을 검출했으며, 형태가 복잡한 물체의 경우에도 효과적으로 경계선을 검출하고 계산 복잡도를 감소시켰다.

GPU-based Adaptive LOD control for Quadtree-Based Terrain Rendering (사진트리 기반 지형렌더링을 위한 GPU기반의 적응형 상세단계 조정 방법)

  • Choi, In-Ji;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.8 no.3
    • /
    • pp.61-68
    • /
    • 2008
  • Quadtree-based terrain visualization methods have been used in a lot of applications. However, because most procedures are performed on the CPU, the rendering speed is slow in comparison to methods using GPU. In this paper, we present a quadtree-based terrain visualization method working on the GPU with specially designed data structure, error-texture and LOD-texture, and block-based acceleration method. In preprocessing step, we calculate errors in world space and store them to error-texture. In rendering step, we examine projected errors of error-texture and choose the detail level, then store the projected errors to LOD-texture. View frustum culling is performed as block unit using the values of error-texture and LOD-texture. This method reduces CPU load and performs time consuming jobs such as LOD selection and view frustum culling.

  • PDF

Hyperspectral Image Fusion Algorithm Based on Two-Stage Spectral Unmixing Method (2단계 분광혼합기법 기반의 하이퍼스펙트럴 영상융합 알고리즘)

  • Choi, Jae-Wan;Kim, Dae-Sung;Lee, Byoung-Kil;Yu, Ki-Yun;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.295-304
    • /
    • 2006
  • Image fusion is defined as making new image by merging two or more images using special algorithms. In case of remote sensing, it means fusing multispectral low-resolution remotely sensed image with panchromatic high-resolution image. Generally, hyperspectral image fusion is accomplished by utilizing fusion technique of multispectral imagery or spectral unmixing model. But, the former may distort spectral information and the latter needs endmember data or additional data, and has a problem with not preserving spatial information well. This study proposes a new algorithm based on two stage spectral unmixing model for preserving hyperspectral image's spectral information. The proposed fusion technique is implemented and tested using Hyperion and ALI images. it is shown to work well on maintaining more spatial/spectral information than the PCA/GS fusion algorithms.

Texture-Spatial Separation based Feature Distillation Network for Single Image Super Resolution (단일 영상 초해상도를 위한 질감-공간 분리 기반의 특징 분류 네트워크)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • In this paper, I proposes a method for performing single image super resolution by separating texture-spatial domains and then classifying features based on detailed information. In CNN (Convolutional Neural Network) based super resolution, the complex procedures and generation of redundant feature information in feature estimation process for enhancing details can lead to quality degradation in super resolution. The proposed method reduced procedural complexity and minimizes generation of redundant feature information by splitting input image into two channels: texture and spatial. In texture channel, a feature refinement process with step-wise skip connections is applied for detail restoration, while in spatial channel, a method is introduced to preserve the structural features of the image. Experimental results using proposed method demonstrate improved performance in terms of PSNR and SSIM evaluations compared to existing super resolution methods, confirmed the enhancement in quality.

The Implementation of Face Authentication System Using Real-Time Image Processing (실시간 영상처리를 이용한 얼굴 인증 시스템 구현)

  • Baek, Young-Hyun;Shin, Seong;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.193-199
    • /
    • 2008
  • In this paper, it is proposed the implementation of face authentication system based on real-time image processing. We described the process implementing the two steps for real-time face authentication system. At first face detection steps, we describe the face detection by using feature of wavelet transform, LoG operator and hausdorff distance matching. In the second step we describe the new dual-line principal component analysis(PCA) for real-time face recognition. It is combines horizontal line to vertical line so as to accept local changes of PCA. The proposed system is affected a little by the video size and resolution. And then simulation results confirm the effectiveness of out system and demonstrate its superiority to other conventional algorithm. Finally, the possibility of performance evaluation and real-time processing was confirmed through the implementation of face authentication system.

Automatic Generation of Clustered Solid Building Models Based on Point Cloud (포인트 클라우드 데이터 기반 군집형 솔리드 건물 모델 자동 생성 기법)

  • Kim, Han-gyeol;Hwang, YunHyuk;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1349-1365
    • /
    • 2020
  • In recent years, in the fields of smart cities and digital twins, research on model generation is increasing due to the advantage of acquiring actual 3D coordinates by using point clouds. In addition, there is an increasing demand for a solid model that can easily modify the shape and texture of the building. In this paper, we propose a method to create a clustered solid building model based on point cloud data. The proposed method consists of five steps. Accordingly, in this paper, we propose a method to create a clustered solid building model based on point cloud data. The proposed method consists of five steps. In the first step, the ground points were removed through the planarity analysis of the point cloud. In the second step, building area was extracted from the ground removed point cloud. In the third step, detailed structural area of the buildings was extracted. In the fourth step, the shape of 3D building models with 3D coordinate information added to the extracted area was created. In the last step, a 3D building solid model was created by giving texture to the building model shape. In order to verify the proposed method, we experimented using point clouds extracted from unmanned aerial vehicle images using commercial software. As a result, 3D building shapes with a position error of about 1m compared to the point cloud was created for all buildings with a certain height or higher. In addition, it was confirmed that 3D models on which texturing was performed having a resolution of less than twice the resolution of the original image was generated.

Spatio-spectral Fusion of Multi-sensor Satellite Images Based on Area-to-point Regression Kriging: An Experiment on the Generation of High Spatial Resolution Red-edge and Short-wave Infrared Bands (영역-점 회귀 크리깅 기반 다중센서 위성영상의 공간-분광 융합: 고해상도 적색 경계 및 단파 적외선 밴드 생성 실험)

  • Park, Soyeon;Kang, Sol A;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.523-533
    • /
    • 2022
  • This paper presents a two-stage spatio-spectral fusion method (2SSFM) based on area-to-point regression kriging (ATPRK) to enhance spatial and spectral resolutions using multi-sensor satellite images with complementary spatial and spectral resolutions. 2SSFM combines ATPRK and random forest regression to predict spectral bands at high spatial resolution from multi-sensor satellite images. In the first stage, ATPRK-based spatial down scaling is performed to reduce the differences in spatial resolution between multi-sensor satellite images. In the second stage, regression modeling using random forest is then applied to quantify the relationship of spectral bands between multi-sensor satellite images. The prediction performance of 2SSFM was evaluated through a case study of the generation of red-edge and short-wave infrared bands. The red-edge and short-wave infrared bands of PlanetScope images were predicted from Sentinel-2 images using 2SSFM. From the case study, 2SSFM could generate red-edge and short-wave infrared bands with improved spatial resolution and similar spectral patterns to the actual spectral bands, which confirms the feasibility of 2SSFM for the generation of spectral bands not provided in high spatial resolution satellite images. Thus, 2SSFM can be applied to generate various spectral indices using the predicted spectral bands that are actually unavailable but effective for environmental monitoring.

GPU-based Shift-FFT Implementation for Ultra-High Resolution Hologram Generation (초고해상도 홀로그램 생성을 위한 GPU 기반 Shift-FFT 처리 구현)

  • Lee, Jaehong;Kang, Homin;Yeom, Han-ju;Cheon, Sanghoon;Park, Joongki;Kim, Duksu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.563-566
    • /
    • 2020
  • 본 논문은 초고해상도 컴퓨터 홀로그램 생성을 위한 GPU 기반 2D Shift-FFT 의 효율적인 구현 방법을 제안한다. 본 연구가 제안하는 알고리즘은 기존에 여섯 단계로 이루어진 처리과정을 다섯 단계로 줄임으로서, 병렬처리에서 비효율적인 메모리 접근 과정을 줄인다. 또한, 핀드(pinned) 메모리 기반의 CPU-GPU 데이터 통신 통로인 핀드 버퍼(pinned buffer)를 사용하고 다중 스트림을 채용함으로써, GPU 활용의 주요 병목원인이 되는 데이터 통신의 부하를 줄이고 GPU 활용 효율을 높인다. 본 연구는 제안하는 알고리즘의 효용성을 증명하기 위해 서로 다른 두 시스템에 알고리즘을 구현하고, 다양한 크기의 행렬에 대한 2D-FFT 처리에 대한 성능을 측정하였다. 그 결과, CPU 기반의 FFTW 라이브러리 대비 최대 3 배, 동일한 GPU 를 사용하는 cuFFT 라이브러리 대비 최대 1.5 배 높은 성능을 달성하였다. 이러한 결과는, 본 연구가 제안하는 알고리즘의 효용성을 보여주는 결과다.

  • PDF