• Title/Summary/Keyword: 두경부 종양

Search Result 2,075, Processing Time 0.027 seconds

Clinical Study on Laryngo - Microscopic Surgery For Vocal Nodules and Polyps (후두결절 및 폴립의 후두미세 수술에 관한 임상연구)

  • 문영일
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1983.05a
    • /
    • pp.11.2-11
    • /
    • 1983
  • Vocal nodules and polyps are much more frequent in singers, public speakers, teachers and actors. Voice trauma and voice misuse, at times associated with mild inflammatory reaction, appear to be important in their etiology. It is generally agreed that vocal cord nodules and polyps are inflammatory in nature and they arise in the subepithelial layer of loose connective tissue of the vocal cord. Since the junction of anterior and middle thirds of the membranous cord and has the greatest amplitude of vibration. This is the site of predilection for vocal cord nodules. The author performed laryngomicrosurgery for 70 cases of vocal nodules and polyps at Ewha Womans University Hospital during the period of 5 years. The result obtained were as follows ; 1) Surgical excision is not necessarily the best approach because vocal nodules in the early stages will resolve with the simplest voice therapy. 2) In children, surgery is rarely indicated because most nodules in children regress during adolescence. 3) For patients who use their voices professionally, voice therapy is indicated for three months. 4) If after three month of conservative treatment the cord lesion does not improve and the patient it still dissatisfied with his voice, laryngomicrosurgery can then be considered. 5) The small cuffed endotracheal tube in the interarytenoid space helps to keep the cords immobile and in an abducted position. 6) Removal of the nodule shoule be started by gentle retraction posteriorly and as soon as a tear appears anterior to the nodule. 7) On occasion it is preferable to start the dissection with a siccle knife while the nodule is held on the stretch. 8) Voice rest should be maintained for a week following which the free edges of the cords are usually healed.

  • PDF

A study on dosimetric comparison of craniospinal irradiation using tomotherpy and reproducibility of position (토모테라피를 이용한 뇌척수조사의 선량적 비교와 자세 재현성에 대한 고찰)

  • Lee, Heejeong;Kim, Jooho;Lee, Sangkyu;Yoon, Jongwon;Cho, Jeonghee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • Purpose: The purpose of this study was to verify dosimetric results and reproducibility of position during craniospinal irradiation (CSI) using tomotherapy (Accuray Incorporated, USA). Also, by comparing with conventional CSI Technique, we confirmed the efficiency of using a Tomotherapy. Materials and Methods: 10 CSI patients who get tomotherapy participate. Patient-specific quality assurances (QA) for each patient are conducted before treatment. When treating, we took Megavoltage Computed Tomography (MVCT) that range of head and neck before treatment, L spine area after treatment. Also we conducted in-vivo dosimetry to check a scalp dose. Finally, we made a 3D conventional radiation therapy(3D-CRT) of those patients to compare dosimetric differences with tomotherapy treatment planning. Results: V107, V95 of brain is 0 %, 97.2 % in tomotherapy, and 0.3 %, 95.1 % in 3D-CRT. In spine, value of V107, V95 is 0.2 %, 18.6 % in tomotherapy and 89.6 %, 69.9 % in 3D-CRT. Except kidney and lung, tomotherapy reduced normal organ doses than 3D-CRT. The maximum positioning error value of X, Y, Z was 10.2 mm, -8.9 mm, -11.9 mm. Through in-vivo dosimetry, the average of scalp dose was 67.8 % of prescription dose. All patient-specific QA were passed by tolerance value. Conclusion: CSI using tomotherapy had a risk of parallel organ such as lung and kidney because of integral dose in low dose area. However, it demonstrated dosimetric superiority at a target and saved normal organ to reduce high dose. Also results of reproducibility were not exceeded margins that estimated treatment planning and invivo dosimetry showed to reduce scalp dose. Therefore, CSI using tomotherapy is considered to efficient method to make up for 3D-CRT.

  • PDF

Activation and Abnormalities of Cell Cycle Regulating Factor in Head and Neck Squamous Cell Carcinoma Cell Lines: Abnormal Expression of CDKN2 Gene in Laryngeal Squamous Cell Carcinoma (두경부 편평상피세포암 세포주에서 세포주기조절인자의 활성 및 이상 : 후두편평상피세포암에서 종양억제유전자 CDKN2 유전자의 발현이상)

  • Song, Si-Youn;Han, Tae-Hee;Bai, Chang-Hoon;Kim, Yong-Dae;Song, Kei-Won
    • Journal of Yeungnam Medical Science
    • /
    • v.22 no.2
    • /
    • pp.166-182
    • /
    • 2005
  • Background: Cyclin-dependent kinase (CDK) inhibitors are family of molecules that regulate the cell cycle. The CDKN2, a CDK4 inhibitor, also called p16, has been implicated in human tumorigenesis. The CDKN2 inhibits the cyclin/CDK complexes which regulate the transition from G1 to S phase of cell cycle. There is a previous report that homozygous deletion of CDKN2 region on chromosome 9p21 was detected frequently in astrocytoma, glioma and osteosarcoma, less frequently in lung cancer, leukemia and ovarian cancer, but not detected in colon cancer and neuroblastoma. However, little is known about the relationship between CDKN2 and laryngeal cancer. Therefore this study was initiated to investigate the role of CDKN2 in human laryngeal squamous cell carcinoma development.1) Materials and methods: We used 5 human laryngeal carcinoma cell lines whether they have deletions or losses of CDKN2 gene expression by DNA-PCR or RT-PCR, respectively. We examined 8 fresh frozen human laryngeal cancer tissues to detect the loss of heterozygosity (LOH) of CDKN2. PCR was performed by using microsatellite markers of short arm of human chromosome 9 (D9S126, D9S144, D9S156, D9S161, D9S162, D9S166, D9S171, D9S200 and D9SIFNA). For informative cases, allelic loss was scored if the signal of one allele was significantly decreased in tumor DNA when compared to the same allele in normal DNA. Results: The CDKN2 DNA deletion was observed in 3 cell lines. The CDKN2 mRNA expression was observed in only one cell line, which was very weak. LOH was detected in 7 cases (87.5%). Conclusion: These results suggest that CDKN2 plays a role in the carcinogenesis of human laryngeal squamous cell carcinoma.

  • PDF

Automated patient set-up using intensity based image registration in proton therapy (양성자 치료 시 Intensity 기반의 영상 정합을 이용한 환자 자동화 Set up 적용 방법)

  • Jang, Hoon;Kim, Ho Sik;Choe, Seung Oh;Kim, Eun Suk;Jeong, Jong Hyi;Ahn, Sang Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.97-105
    • /
    • 2018
  • Purpose : Proton Therapy using Bragg-peak, because it has distinct characteristics in providing maximum dosage for tumor and minimal dosage for normal tissue, a medical imaging system that can quantify changes in patient position or treatment area is of paramount importance to the treatment of protons. The purpose of this research is to evaluate the usefulness of the algorithm by comparing the image matching through the set-up and in-house code through the existing dips program by producing a Matlab-based in-house registration code to determine the error value between dips and DRR to evaluate the accuracy of the existing treatment. Materials and Methods : Thirteen patients with brain tumors and head and neck cancer who received proton therapy were included in this study and used the DIPS Program System (Version 2.4.3, IBA, Belgium) for image comparison and the Eclipse Proton Planning System (Version 13.7, Varian, USA) for patient treatment planning. For Validation of the Registration method, a test image was artificially rotated and moved to match the existing image, and the initial set up image of DIPS program of existing set up process was image-matched with plan DRR, and the error value was obtained, and the usefulness of the algorithm was evaluated. Results : When the test image was moved 0.5, 1, and 10 cm in the left and right directions, the average error was 0.018 cm. When the test image was rotated counterclockwise by 1 and $10^{\circ}$, the error was $0.0011^{\circ}$. When the initial images of four patients were imaged, the mean error was 0.056, 0.044, and 0.053 cm in the order of x, y, and z, and 0.190 and $0.206^{\circ}$ in the order of rotation and pitch. When the final images of 13 patients were imaged, the mean differences were 0.062, 0.085, and 0.074 cm in the order of x, y, and z, and 0.120 cm as the vector value. Rotation and pitch were 0.171 and $0.174^{\circ}$, respectively. Conclusion : The Matlab-based In-house Registration code produced through this study showed accurate Image matching based on Intensity as well as the simple image as well as anatomical structure. Also, the Set-up error through the DIPS program of the existing treatment method showed a very slight difference, confirming the accuracy of the proton therapy. Future development of additional programs and future Intensity-based Matlab In-house code research will be necessary for future clinical applications.

  • PDF

Radioprotective Effects of Granulocyte-Colony Stimulating Factor in the Jejunal Mucosa of Mouse (생쥐에서 과립구 집락형성인자(Granulocyte-Colony Stimulating Factor)의 공장점막에 대한 방사선 보호효과)

  • Ryu, Mi-Ryeong;Chung, Su-Mi;Kay, Chul-Seung;Kim, Yeon-Shil;Yoon, Sei-Chul
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • Purpose : Granulocyle-colony stimulating factor (G-CSF) has been widely used to treat neutropenia caused by chemotherapy or radiotherapy. The efficacy of recombinant human hematopoietic growth factors in improving oral mucositis after chemotherapy or radiotherapy has been recently demonstrated in some clinical studies. This study was designed to determine whether G-CSF can modify the radiation injury of the intestinal mucosa in mice. Materials and Methods : One hundred and five BALB/c mice weighing 20 grams were divided into nine subgroups including G-CSF alone group $(I:10\;{\mu}g/kg\;or\;II:100\;{\mu}g/kg)$, radiation alone group (7.5 or 12 Gy on the whole body), combination group with G-CSF and radiation (G-CSF I or II plus 7.5 Gy, G-CSF I or II plus 12 Gy), and control group. Radiation was administered with a 6 MV linear accelerator (Mevatron Siemens) with a dose rate of 3 Gy/min on day 0. G-CSF was injected subcutaneously for 3 days, once a day, from day -2 to day 0. Each group was sacrificed on the day 1, day 3, and day 7. The mucosal changes of jejunum were evaluated microscopically by crypt count per circumference, villi length, and histologic damage grading. Results : In both G-CSF I and II groups, crypt counts, villi length, and histologic damage scores were not significantly different from those of the control one (p>0.05). The 7.5 Gy and 12 Gy radiation alone groups showed significantly lower crypt counts and higher histologic damage scores compared with those of control one (p<0.05). The groups exposed to 7.5 Gy radiation plus G-CSF I or II showed significantly higher crypt counts and lower histologic damage scores on the day 3, and lower histologic damage scores on the day 7 compared with those of the 7.5 Gy radiation alone one (p<0.05). The 12 Gy radiation plus G-CSF I or II group did not show significant difference in crypt counts and histologic damage scores compared with those of the 12 Gy radiation alone one (p>0,05). Most of the mice in 12 Gy radiation with or without G-CSF group showed intestinal death within 5 days. Conclusion : These results suggest that G-CSF may protect the jejunal mucosa from the acute radiation damage following within the tolerable ranges of whole body irradiation in mice.

  • PDF