• Title/Summary/Keyword: 동해 울릉분지

Search Result 147, Processing Time 0.029 seconds

The distribution of sulfate and methane concentration and their vertical trend in the Ulleung Basin (동해 울릉분지의 황산염과 메탄의 농도 분포 및 심도에 따른 변화 양상)

  • Kim Ji-Hoon;Park Myong-Ho;Ryu Byong-Jae;Lee Young-Joo;Han Hyun-Chul;Cheong Tae-Jin;Oh Jae-Ho;Chang Ho-Wan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.622-625
    • /
    • 2005
  • 본 연구의 목적은 동해 울릉분지 천부퇴적층의 공극수와 메탄의 특징 및 상호작용을 규명하는데 있다. 울릉분지에서 채취한 코어에서 공극수를 추출하여 분석한 결과, 공극수의 황산염 농도가 퇴적물의 심도가 증가할수록 감소하며, 감소하는 경향은 크게 세 가지 (직선성, concave down, upward kink)로 나뉨을 알 수 있었다. 이는 모든 코어에서 황산염 환원작용이 일어나고 있음을 지시한다 황산염 농도의 수직적 구배를 이용하여 SMI (sulfate-methane interface) 심도를 계산하면, 남부울릉분지가 북부울릉분지보다 낮은 값을 갖는다. 반면에 메탄 농도는 퇴적물의 심도가 증가할수록 전반적으로 증가하며, 공간적으로는 남부 울릉분지가 북부울릉보지보다 높다. 또한 남부울릉분지에서 메탄가스 농도는 SMI 심도 아래에서 급격히 증가한다 메탄가스의 탄소 안정동위원소$(\delta^{13}C)$ 분석 값들은 대부분 $-60\%_{\circ}$이하로서 이는 메탄가스가 열기원 보다는 박테리아기원임을 지시해준다 또한 남부 울릉분지에서 메탄의 탄소 안정동위원소 분석 값들은 메탄농도가 증가할수록 낮은 값을 보여 주는 데 이러한 결과들은 남부 울릉분지에서 무산소 메탄 산화작용이 일어나고 있음을 지시하고, 메탄의 상향 분산 (diffusion)량이 북부 울릉분지보다 많이 일어난다는 것을 의미한다. 공극수내 황산염 이온 농도 구배와 메탄가스 농도를 종합적으로 고려할 때, 울릉분지에서 가스하이드레이트의 부존가능성은 북부 울룽분지보다 남부 울릉분지가 높은 것으로 추정된다.

  • PDF

Geophysical studies of gas hydrate in the Ulleung Basin, East Sea (동해 울릉분지 가스하이드레이트 지구물리탐사연구)

  • Yoo, Dong-G.;Kim, Gil-Y.;Park, Keun-P.;Lee, Ho-Y.;Ryu, Byong-J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.672-675
    • /
    • 2009
  • 동해 울릉분지에서 취득된 다중채널 탄성파자료 해석에 의하면 이 지역에는 가스하이드레이트 부존가능성을 지시하는 해저모방반사면, 탄성파침니/칼럼, 음향공백대, 증폭반사면, 가스분출 구조 등을 포함하는 5가지 탄성파 지시자가 존재한다. 가장 대표적인 지시자인 해저모방반사면은 연구지역의 남쪽사면의 경우 연속성이 양호하고 강한 진폭을 갖는 반면, 북쪽 중앙분지에서는 상대적으로 진폭이 약하고 연속성이 불량하다. 반사도 감소 및 속도 풀업 특징을 갖는 탄성파 침니/칼럼구조는 중앙분지와 북동쪽해역에 주로 분포하며 가스하이드레이트 혹은 가스유체의 부존가능성을 시사해준다. 반사강도가 약화되어 나타나는 음향공백대는 저탁류/원양성 퇴적물이 분포하는 중앙분지에 부분적으로 발달하며, 칼럼과 연계된 음향공백대는 북동쪽 사면저부에 주로 분포한다. 해저모방반사면의 하부에 위치하는 증폭반사면은 연구지역의 서쪽 사면에 분포하며 강한 음의 진폭특성으로 보아 자유가스를 함유한 층으로 해석된다. 가스분출구조는 주로 쇄설성 퇴적물이 우세한 조사지역의 남쪽 대륙사면지역에 광범위하게 분포하며 돔구조 혹은 폭마크 등을 수반한다.

  • PDF

A Geophysical Study on the Geotectonics and Opening Mechanism of the Ulleung Basin, East Sea (동해 울릉분지의 지구조 및 성인에 관한 지구물리학적 연구)

  • Suh, Man-Cheol;Lee, Gwang-Hoon;Shon, Ho-Woong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.1
    • /
    • pp.34-44
    • /
    • 1998
  • Analysis of gravity, magnetic, and seismic reflection data from the Ulleung Basin, East Sea has provided some insights into the opening mechanism and crustal type of the basin. Free-air gravity anomaly data show positive anomalies of about 40~60 mgal near the Korea Plateau and Oki Bank and of about -20~20 mgal in the central basin. Bouguer gravity anomaly data exhibit NE-SW trending positive anomalies of about 150 mgal in the central basin which is interpreted to be related to high-density crustal material. Abrupt changes in both Free-air and Bouguer gravity anomaly profiles across the basin margins may be due to transition between continental and oceanic crusts. Magnetic anomalies in the basin are generally less than -400 nT. No stripe pattern is evident in the magnetic anomaly map but a NW-SE trending symmetric pattern is seen in some magnetic profiles. The symmetric pattern is probably associated with the high-density crustal material in the central basin suggested by Bouguer gravity anomaly. The acoustic basement in the deep part of the basin has only a small amount of local relief. No graben or half-graben structures are seen in the acoustic basement from which mechanical extension might be inferred. The lack of high-relief structures in the acoustic basement may suggest that the basin is underlain by oceanic crust or that the basement is overlain by thick volcanic layer which obscures the structures and relief of the basement. High-density crust in the central basin inferred from gravity data, abrupt changes in gravity anomalies across the basin margins, symmetric pattern seen in some magnetic anomaly profiles, and lack of relief in the acoustic basement may suggest sea-floor spreading origin of the Ulleung Basin.

  • PDF

Estimate of Manganese and Iron Oxide Reduction Rates in Slope and Basin Sediments of Ulleung Basin, East Sea (동해 울릉분지 퇴적물에서 망간산화물과 철산화물 환원율 추정)

  • Choi, Yu-Jeong;Kim, Dong-Seon;Lee, Tae-Hee;Lee, Chang-Bok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.3
    • /
    • pp.127-133
    • /
    • 2009
  • In order to determine organic carbon oxidation by manganese and iron oxides, six core sediments were obtained in slope and basin sediments of Ulleung Basin in East Sea. The basin sediments show high organic carbon contents (>2%) at the water depths deeper than 2,000 m; this is rare for deep-sea sediments, except for those of the Black Sea and Chilean upwelling regions. In the Ullleung Basin, the surface sediments were extremely enriched by Manganese oxides with more than 2%. Maximum contents of Fe oxides were found at the depth of $1{\sim}4cm$ in basin sediments. However, the high level of Mn and Fe oxides was not observed in slope sediment. Surface manganese enrichments (>2%) in Ulleung Basin may be explained by two possible mechanisms: high organic carbon contents and optimum sedimentation rates and sufficient supply of dissolved Manganese from slope to the deep basin. Reduction rates of iron and manganese oxides ranged from 0.10 to $0.24\;mmol\;m^{-2}day^{-1}$ and from 0.30 to $0.57\;mmol\;m^{-2}day^{-1}$, respectively. In Ulleung Basin sediments, $13{\sim}26%$ of organic carbon oxidation may be linked to the reduction of iron and manganese oxides. Reduction rates of metal oxides were comparable to those of Chilean upwelling regions, and lower than those of Danish coastal sediments.

Slope Stability and Development of Debris Flow Deposit in the Ulleung Basin, East Sea (동해 울릉분지의 사면안정성 및 쇄설류 퇴적체의 발달)

  • Lee, Sun-Jong;Lee, Jeong-Min;Yoo, Dong-Geun;Lee, Go-Eun;Park, Soo-Chul
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.129-143
    • /
    • 2017
  • The shallow sediments in the southwestern Ulleung Basin consist of mass flow deposits such as slide/slump and debris flow deposits (DFD), caused by slope failure. These sediments are proven to be important in studying geological disaster and stability of the seafloor. In this paper, we analysised the flow accumulation and slope failure susceptibility of the Ulleung Basin on the basis of multi-beam data, collected in this area. We also studied the distribution pattern and the seismic characteristics of the DFD in the uppermost layer of the Ulleung Basin on the basis of seismic data. The slope susceptibility was calculated as the frequency ratio of each factors including slope, aspect, curvature and stream power index (SPI), which causes the slope failure. These results indicate that the slope failure is frequently to occur in the southern and western continental slope of the Ulleung Basin. The sediment flow (mass flow) caused by the slope failure converges to the north and northwest of the Ulleung Basin. According to the seismic characteristics, the uppermost layer in study area can be divided into four sedimentary unit. These sedimentary units develop from the south and southwest to the north and northwest in association with slope susceptibility and flow accumulation.

Dissolved Oxygen at the Bottom Boundary Layer of the Ulleung Basin, East Sea (동해 울릉분지 해저 경계면의 용존산소)

  • Kang, Dong-Jin;Kim, Yun-Bae;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.32 no.4
    • /
    • pp.439-448
    • /
    • 2010
  • General consensus on typical vertical profile of dissolved oxygen in the Ulleung Basin is that dissolved oxygen concentration beyond 300 m decreases with increasing depth. However, the results of our observations in 2005 and 2006 revealed three different dissolved oxygen distribution types in the deep layer of the Ulleung Basin. The first type showed oxygen concentration decreasing with increasing depth (Type-1), the second showed oxygen concentration decreasing very sharply near the bottom boundary layer but constant in the bottom adiabatic layer (Type-2), the final was of the oxygen minimum layer above the bottom boundary layer (Type-3). Type-2 was the most common pattern in the Ulleung Basin. Type-1 was most common close to the Japan Basin, including the Ulleung Interplane Gap, while Type-3 was found around Dok do. Oxygen Consumption Rate (OCR) at surface sediment estimated using the dissolved oxygen distribution at the bottom boundary layer was $0.2{\sim}5.8\;mmol{\cdot}m^{-2}d^{-1}$, which coincided with OCR from direct sediment incubation. This implies that organic matter decomposition at surface sediment may play an important role in dissolved oxygen distribution patterns at the bottom boundary layer of the Ulleung Basin.

Marine Geophysical Constraints on the Origin and Evolution of Ulleung Basin and the Seamounts in the East Sea (울릉분지와 동해 해산의 기원과 발달과정에 대한 해양지구물리학적 연구)

  • Kim Jinho;Park Soo-chul;Kang Moo-hee;Kim Kyong-O;Han Hyun-chul
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.643-656
    • /
    • 2005
  • The East Sea, a marginal sea or back-arc basin, consists of Japan Basin, Yamato Basin, and Ulleung Basin and is surrounded by the Pacific Plate and Philippine Sea Plate. Ulleung Basin locates in the southwestern part of the East Sea and shows the depth of 1,500 m in average and 2,500 m in maximum, connecting to the Japan Basin along 2,000 m contour. The slope of the seafloor is greater in the western side of the basin than in the southern and the eastern side. The crustal thickness of the Ulleung Basin from the OBS tends to get thicker toward the north and the west side and the sediment thickness of the Ulleung Basin is getting thicker toward the southeast side and reaches up to 12 km. The crustal type of the Ulleung Basin was variously suggested as like as a rifted continental crust, an extended continental crust, and an incipient oceanic trust. The origin of the crustal formation and the Ulleung Basin, however, is still controversial. Based on the bathymetry and gravtiy anomaly data for this study, the axis of the Ulleung Basin shows that the basin develops along the axis trending NW-SE direction and reveals a general symmetry of the bathymetry. And also the free-air gravity anomalies show a very similar pattern to the bathymetry of the basin. The sediment thickness is relatively thicker in the southeastern side of the basin than in the northwestern side. Although the crustal age of the Ulleung Basin is supposed to be younger than them of the Japan Basin and the Yamato Basin, the free-air gravity anomalies of the Ulleung Basin ranging -40 to 50 mGals are lower than the other basins, which suggests that the densities of crust and sediment of the Ulleng Basin are lower than the Japan Basin and the Yamato Basin.

Characteristics of Physical Properties in the Ulleung Basin (울릉분지 내의 물리적 특성)

  • Kim, Kuh;Kim, Kyung-Ryul;Chung, Jong-Yul;Yoo, Hong-Sun;Park, Sang-Gap
    • 한국해양학회지
    • /
    • v.26 no.1
    • /
    • pp.83-100
    • /
    • 1991
  • A layer of salinity-minimum which characterizes the East Sea intermediate Water (ESIW) is found at an approximate depth of 200 m in three CTD section taken in the Ulleung Basin on May 17-21, 1988. Properties at this layer vary in ranges of $1.1^{\circ}C except at stations near the east coast of Korea where temperature is as high as $4.39^{\circ}C$ and salinity is as low as $33.992{\textperthousand}$. To be distinguished from the ESIW the East Sea Proper Water (ESPW) may be characterized by temperature less than $1^{\circ}C$, Salinity at the saliently-minimum layer and 500db increases southward in general, implying that the cold waters, both ESIW and ESPW, formed in the northern basin of the East Sea are spreading southward below the permanent thermocline in the basin. Hydrography in the Ulleung Basin is very similar to that in the Alboran Sea, suggesting a possibility of an anticyclonic circulation in the Ulleung Basin which is controlled strongly by the shoaling bottom.

  • PDF

A comparison between organic matters and sedimentary facies in the Ulleung Basin, East Se (동해 울릉분지의 퇴적상과 유기물 특성 대비)

  • Chun, Jong-Hwa;Kwon, Young-Ihn;Kim, Ji-Hoon;Kim, Hag-Ju;Ryu, Byoung-Jae;Son, Byeong-Kook;Lee, Young-Joo;Lee, Ho-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.504-506
    • /
    • 2007
  • 동해 울릉분지에서 채취된 피스톤 코어 시료의 퇴적상과 유기물 특성을 대비하였다. 코어 시료의 퇴적상은 크게 홀로세 생물교란된 뻘 퇴적상과 빙하기의 다양한(생물교란된, 엽리가 발달된) 뻘 퇴적상으로 구분되었다. 코어 시료의 유기물 특성은 총유기탄소함량과 퇴적물 밝기($L^{\ast}$), 석영 함량, 오팔A 함량을 대비하여 밝혔다. 총유기탄소함량은 퇴적물 밝기와 높은 상관계수를 가진다. 코어 시료의 석영 함량은 총유기탄소함량과 퇴적시기에 따른 상관관계의 차이를 보이는데, 이것은 퇴적기작 차이에 의한 것으로 해석된다. 그리고 오팔 A와 총유기탄소함량의 상관관계는 퇴적장소에 따라 차이를 갖는다. 동해 울릉분지 코어 시료는 총유기탄소함량과 퇴적물 밝기가 높은 상관계수를 갖는데, 이것은 초기속성작용의 영향이 크지 않았음을 지시하는 것이다. 후기 홀로세에서는 총유기탄소함량이 거의 일정한 구간에서도 오팔A 함량이 큰 차이가 나타나는데, 이것은 퇴적장소에 따라 고해양 생산력의 차이가 있었음을 지시하는 것이다.

  • PDF

Gas Hydrate Exploration Using LWD/MWD in the Ulleung Basin, the East Sea of Korea (LWD/MWD를 이용한 동해 울릉분지 가스하이드레이트 탐사)

  • Kim, Gil-Young;Yoo, Dong-Geun;Kim, Won-Sik;Lee, Ho-Young;Park, Keun-Pil
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.263-270
    • /
    • 2008
  • The Gas Hydrate Research and Development Organization (KGHDO) of Korea accomplished successfully geophysical logging (LWD: Logging While Drilling, MWD: Measurement While Drilling) for five sites in 2007, in order to investigate the presence of gas hydrate in the Ulleung Basin, the East Sea of Korea. The togging parameters acquired from LWD/MWD dre electrical resistivity, acoustic velocity, neutron density and porosity, and natural gamma. In addition, pressure, temperature, and diameter of borehole were measured. LWD/MWD data showed several evidences indicating the presence of gas hydrate. Based on LWD/MWD data, three coring sites were selected for sampling of gas hydrate. Subsequently, various gas hydrate samples were collected directly from three sites. Therefore. the presence of gas hydrates was verified by coring. LWD/MWD data will be significantly used to estimate the amount of gas hydrate. Also, they will provide important information to elucidate about sedimentologic characteristics of gas-hydrate bearing formation and sedimentary environment of the Ulleung Basin.