• Title/Summary/Keyword: 동축분사기

Search Result 109, Processing Time 0.022 seconds

Dynamics of Coaxial Swirl Injectors in Combustion Environment (연소 조건하의 동축형 분사기의 동적 특성 고찰)

  • Seo Seonghyeon;Han Yeoung-Min;Lee Kwang-Jin;Kim Seung-Han;Seol Woo-Seok;Lee Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.282-287
    • /
    • 2004
  • Unielement combustion tests were conducted using coaxial bi-swirl injectors. Major experimental parameters were a recess length and a fuel-side swirl chamber. Combustion efficiency mainly depends on a mixing mechanism for the present coaxial swirl injectors. Low-frequency pressure excitations around 200Hz were observed for all injectors. However, dynamic behaviors considerably differ for an external and an internal mixing case controlled by a recess length. The internal mixing induces mixture to be biased at a specific frequency in a mass flow rate, which results in a relatively high amplitude of pressure fluctuations but results for the external mixing case show that fuel and oxidizer mixture flow carries more complicated, multiple wave characteristics due to broad mixing region as well as disintegration and merging phenomena of propellant films.

  • PDF

Study on Atomization Characteristics of Shear Coaxial Injectors (전단동축형 분사기들의 미립화 특성에 대한 연구)

  • Ahn, Jonghyeon;Lee, Keunseok;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Six shear coaxial injectors with different recess length and taper angle were manufactured. Cold-flow tests on the injectors were performed at room temperature and pressure using water and air as simulants. By changing the water mass flow rate and air mass flow rate, spray images were taken under single-injection and bi-injection. Breakup length and spray angle were analyzed from instantaneous and averaged spray images using image processing techniques. For all the injectors, the breakup length generally decreased as the momentum flux ratio increased at the same gas mass flow rate. The injectors with 7.5° taper angle usually had the longest breakup length and the smallest spray angle. When the taper angle was 15° or more, it hardly affected breakup length and spray angle. The recess length did not influence breakup length but its effect on spray angle depended on the taper angle.

An Experimental Assesment of Combustion Stability of Coaxial Swirl Injector and Impinging Injector through Simulating Combustion Test (상압기상연소시험을 통한 동축형 스월 분사기와 충돌형 분사기의 연소안정성 평가)

  • Park, Junhyeong;Kim, Hongjip
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.153-156
    • /
    • 2014
  • This study was aimed to assess combustion stability for coaxial swirl injector and FOOF impinging injector which would be candidates in liquid rocket engine combustors. Simulating combustion tests under atmospheric condition have been conducted by gaseous oxygen and the mixture of methane and propane, using two actual injectors. By analyzing the measured dynamic pressure signals, we have evaluated the combustion stability margin of both injectors by drawing a stability map.

  • PDF

Design and Fabrication of Thrust Chamber for Injector verification of 7 tonf-class Thrust Chamber (7톤급 연소기용 분사기 검증을 위한 연소기 설계 및 제작)

  • Kim, Jong-Gyu;Ahn, Kyu-Bok;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.457-460
    • /
    • 2012
  • Design and fabrication of a sub-scale thrust chamber for verification of 7 tonf-class thrust chamber injectors were described in this paper. The 7 tonf-class thrust chamber consists of mixing head with 90 coaxial swirl injectors and regeneratively combustion chamber cooled by kerosene. The coaxial swirl injectors with different pressure drop and recess number were designed for 7 tonf full-scale thrust chamber. By applying the designed injectors to the sub-scale thrust chamber before applying them to the full-scale thrust chamber, the injector performance and functioning were verified. The sub-scale thrust chamber consists of 19 injectors, has chamber pressure of 70 bar, total propellant mass flow rate of 4.3 kg/s, mixture ratio(O/F) of 2.45.

  • PDF

Effect of Geometrical Parameters on Discharge Coefficients of a Shear Coaxial Injector (전단동축형 분사기의 유량계수에 대한 형상학적 변수들의 영향)

  • Ahn, Jonghyeon;Lee, Keunseok;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.95-102
    • /
    • 2020
  • Six shear coaxial injectors for a 3 tonf-class liquid rocket engine using oxygen and methane as propellants were designed and manufactured by considering geometric design parameters such as a recess length and a taper angle. Cold-flow tests on the injectors were performed using water and air as simulants. By changing the water mass flow rate and air mass flow rate, the injection pressure drop under single-injection and bi-injection was measured. The discharge coefficients through the injector oxidizer-side and fuel-side were calculated and the discharge coefficient ratio between bi-injection and single-injection was obtained. Under single-injection, the recess served to reduce the injection pressure drop on the injector fuel-side. For the injectors without recess, the discharge coefficients under bi-injection were almost the same as those under single-injection. However, for the injectors with recess, the taper angle and bi-injection had a significant effect on the discharge coefficient.

Development of Real-Fluid based Flamelet Modeling for Liquid Rocket Injector (액체로켓분사기 해석을 위한 실제유체 기반의 난류연소모델 개발)

  • Kim, Seong-Ku;Choi, Hwan-Seok;Park, Tae-Seon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.150-155
    • /
    • 2010
  • Liquid rocket injectors play crucial roles on propulsive performance, combustion stability, and heat transfer characteristics. Nevertheless, their developments have mainly relied on empirical methods and expensive hot-firing tests due to lack of fundamental understanding of high pressure combustion phenomena in the near-injector regions. The present study was motivated by recent efforts to develop reliable modeling of liquid rocket combustion. The turbulent combustion model based on the flamelet concept has been extended to take into account real-fluid behaviors occurred at supercritical pressures, and validated against measurements for a cryogenic nitrogen injection, a non-premixed turbulent jet flame at atmospheric pressure, and a LOx/$GH_2$ coaxial shear injector at a supercritical pressure.

  • PDF

The Design and Hot-firing tests of a Water-cooled High Pressure Sub-scale Combustor (물냉각 고압 축소형 연소기의 설계 및 연소시험)

  • Lee, Kwang-Jin;Kim, Jong-Gyu;Lim, Byoung-Jik;Ahn, Kyu-Bok;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • A 3-tonf-class high pressure sub-scale combustor was designed and manufactured to study the performance improvement of combustor. The combustor consists of a combustion chamber with film cooling, thermal barrier coating and water cooling channels to prevent thermal demage of the hardware and an injector head with 37 coaxial swirl injectors. Hot-firing tests were carried out at the design point with varying flow rate for film cooling. The test result revealed that the increase of film cooling flow rate decreases the combustion performance, but in the cases of similar film cooling flow rates, the combustion performance is dependent on the mixture ratio of main injector excluding the film cooling flow rate.

Results of Cold Flow Test and Design of Injectors for Oxidizer-rich Preburner (산화제 과잉 예연소기용 분사기 설계 및 수류 시험 결과)

  • So, YoonSeok;Woo, SeongPil;Lee, Kwang-Jin;Yu, ByungIl;Kim, Jinhyung;Cho, Hwangrae;Bang, Jeongsuk;Han, YeongMin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.52-57
    • /
    • 2018
  • This paper presents the design and cold flow test results of oxidizer-rich preburner injectors for a 9 tonf-class staged combustion engine cycle. Three types of coaxial swirl injectors were designed, and 12 injectors were designed for each type. The diameters of the fuel tangential holes are identical. The diameters of the oxidizer tangential holes were varied to investigate the influence of combustion in the oxidizer-rich preburner according to the momentum ratio of the gas oxidizer generated from combustion in the injector chamber and liquid oxidizer through the cooling channel. It will be verified through a powerpack and combustion test using an oxidizer-rich preburner. In the cold flow test, the fuel flow rate and oxidizer tangential hole flow rate reached the target value based on the designed differential pressure.

Theoretical Model of Coaxial Twin-Fluid Spray In a Liquid Rocket Combustor (연소실 내 동축형 2-유체 분무의 이론적 모델)

  • 조용호;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.37-44
    • /
    • 2002
  • A theoretical study of spray and combustion characteristics due to coaxial twin-fluid injection is conducted to investigate the effects of liquid jet property, droplet size, contact length and liquid jet velocity. Model is properly validated with measurements and shows good agreement. Prediction of jet contact length, droplet size, liquid jet velocity reflects genuine features of coaxial injection in physical and practical aspects. Both the jet contact length and tile droplet size are reduced in a linear manner with an increase of injector diameter. Cross sectional area of liquid intact core is reduced with augmented jet splitting rate, thus the jet is accelerated to maintain the mass continuity and with an assistant of momentum diffusion by burnt gas.

Spray Characteristics of Swirl-coaxial Injector According to the Recess Length and Injection Pressure Variation (리세스 길이 및 분사압력 변이에 따른 스월 동축형 인젝터의 분무특성)

  • Bae, Seong Hun;Kwon, Oh Chae;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.68-76
    • /
    • 2016
  • This research is carried out for the performance evaluation of the injector that is one of the critical components of bipropellant-rocket-engine. Spray characteristics are investigated in detail according to the recess length and injection pressure on the swirl-coaxial-injector using gaseous methane and liquid oxygen as propellants. A visualization is conducted by the Schlieren photography that is composed of a light source, concave mirrors, knife, and high-speed-camera. A hollow-cone-shape is identified in the liquid spray that is spread only by inner injector and the spray angle is decreased due to the diminution of swirl strength in accordance with the increase of the length of injector orifice. When the injector sprays the liquid through the inner injector with the aid of gas through the outer injector, the spray angle in external mixing region tends to increase with rise of the recess length, while in internal mixing region, it is decreased. It is also confirmed that the same tendency of the spray angle with recess length appears irrespective of the injection pressure of liquid spray.