• Title/Summary/Keyword: 동조질량감쇠

Search Result 80, Processing Time 0.023 seconds

A Study on Dynamic Vibration Absorber Using Zener's Model (Zener 모델을 사용한 동흡진기 특성 연구)

  • Oh, Il-Kwon;Lim, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.159-163
    • /
    • 2005
  • A dynamic vibration absorber using the Zener's model has been taken into account with respect to frequency response characteristics. The concept of the tuned mass damper with a single degree of freedom has been well applied for many industrial fields, because many researchers have extensively studied various basic characteristics, performance and optimization methods for long time. The Zener's model has an additional spring, which is connected between a damper and a mass, while the tuned mass damper with a single degree of freedom consists of a mass, a spring and a damper connected in parallel. In previous works, the basic performance and characteristics of the Zoner's model as a dynamic vibration absorber have not been investigated. In this study, the frequency response characteristics according to the parameter change of the Zener's model have been described. In order to find the optimum value of several parameters, we use iterative scheme with three dimensional frequency response diagram by MATLAB programming. Present results shows the Zener's model can give more good damping performance than the simple tuned mass damper, and the numerical of optimization method should be developed for the efficient vibration absorbtion.

  • PDF

Vibration Control of Lamp posts On Bridge using Tuned Mass Dampers (동조질량감쇠기를 이용한 교량 가로등의 진동제어)

  • Ha, Dong-Ho;Kim, Yong-Gyu;Lee, Chang-Hyung;Yoo, Moon-Sig;Park, Dong-Hyun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.432-439
    • /
    • 2006
  • Long span, high-rise bridges are rapidly increasing nowadays. Because of high flexibility, such bridges are easily excited by winds, vehicles, and pedestrians. The vibration of bridge induces a vibration of lamp post and pillar. Wind loads can also excite lamp posts and traffic signal structures directly. Because of low damping, such vibrations of lamp post are frequently amplified and come to collapse or lamp failure. In addition, such vibration makes the maintenance cycle shorter and increases social cost. We conducted vibration tests and identified the dynamic characteristics of two types lamp posts, and proposed tuned mass dampers to control the vibrations. Established models of the lamp posts present the dynamic characteristics of the structures very well and they are used to design TMDs. In this study, we suggested a new-type TMD model that is small, simple, economic and effective to suppress the vibration of lamp posts. The efficiency of TMD was examined by numerically and is to be examined experimentally.

  • PDF

A Preliminary Design for Hybrid Building System with Progressive Collapse Prevention Means (연속붕괴가 방지된 초고층 복합빌딩시스템의 예비설계)

  • Choi, Ki-Bong;Cho, Tae-Jun;Kim, Seong-Soo;Lee, Jin-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.48-54
    • /
    • 2015
  • In this study, we propose an innovative lateral force distribution building system between tall buildings by utilizing the difference of moment of inertia, resulting the reduction of lateral displacement and the lateral forces in terms of an alternative for the dense human and increased cost of lands in highly integrated city area. A successive collapse prevention means by providing additional bearing plate between connections is proposed. In addition to that, a more economical vibration reduction is expected due to the suggested tuned mass damper on the surface of spacial structure. In the considered verification examples, reduced drifts at the top location of the building systems are validated against static wind pressure loads and static earthquake loads. The suggested hybrid building system will improve the safety and reliability of the new or existing building system in terms of more than 30% reduced drift and vibration through the development of convergence of tall buildings and spatial structures.

Vibration Control of High-rise Building Structures using Top-story Isolation Systems (최상층면진시스템을 활용한 고층건물의 진동제어)

  • Kim, Tae-Ho;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.75-82
    • /
    • 2008
  • In this study, the possibility of vibration control of high-rise building structures by applying top-story isolation has been investigated. To this end, El Centro NS (1940) earthquake load is applied to 20- and 50-story building structures for numerical analysis. Artificial wind loads are used to evaluate the serviceability of example structures against wind vibration. As the number of isolated stories of example buildings is changed, structural responses has been evaluated to investigate optimal isolated building mass. And the natural period of isolation systems for top-story isolation is varied to investigate the improvement of control performance compared with the fixed base structure. Based on the analytical results, the top-story isolation system can be used as a hued mass damper and effectively reduce the structural responses of high-rise buildings against wind and seismic loads.

  • PDF

Seismic Control of Tuned Mass Damper System with MDOF Sliding Mode Control Accounting for the Uncertainties (불확실성을 고려한 동조질량 감쇠기(TMD) 시스템의 다자유도 슬라이딩 모드 지진동 제어)

  • Lee, Jin Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.235-242
    • /
    • 2011
  • The control performance in active structural control system can be drastically deteriorated when the modeling errors and the uncertainties existing in the disturbances are disregarded in the designing stage. It can even throw the control system into an unstable phase, resulting in out of control against the seismic excitations. The purpose of the study is to investigate the control effectiveness of a non-linear control system called sliding mode controller(SMC) in cooperation with a Tuned Mass Damper subjected to the three seismic excitations selected from the FFT analysis. Even though the transient performance such as settling time and overshoot were deteriorated, the robustness against the system stability was appeared from SMC when the structural masses and stiffness perturbed within the range of ${\pm}30%$. SMC is a feasible technique for active structural control in cooperation with TMD against seismic disturbances, exhibiting robustness in perturbation of system stiffness and mass as well as uncertainties of the disturbances.

Vibration Control of Mega Frame Structures using a Semi-active Tuned Mass Damper (준능동 TMD를 이용한 메가골조구조물의 진동제어)

  • Kim, Hyun-Su;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.57-68
    • /
    • 2007
  • The mega frame system is becoming popular for the design and construction of skyscrapers because this system exhibits structural efficiency by allowing high rigidity of the structure while minimizing the amount of structural materials to be used. Since the mega frame system is usually adopted for super high-rise buildings, the comfort of occupants may be main concerns in the practical application of this system. For the enhancement of the serviceability of mega frame structures, a semi-active tuned mass damper (STMD) is developed in this study. To this end, a Magnetorheological (MR) damper is employed replacing passive damper as a semi-active damper to improve the control effect of a conventional TMD. Since a conventional finite element model of mega frame structures has significant numbers of DOFs, numerical simulation for investigation of control performances of a STMD is impossible by using the full-order model. Therefore, a reduced-order system using minimal DOFs, which can accurately represent the dynamic behavior of a mega frame structure, is proposed in this study through the matrix condensation technique To improve the efficiency of the matrix condensation technique, multi-level matrix condensation technique is proposed using the structural characteristics of mega frame structures. The efficiency and accuracy of the reduced-order control proposed in this study and the control performance of a STMD were verified using example structures.

Performance Evaluation of Semi-Active Tuned Mass Damper for Elastic and Inelastic Seismic Response Control (준능동 동조질량감쇠기의 탄성 및 비탄성 지진응답 제어성능 평가)

  • Lee, Sang-Hyun;Chung, Lan;Woo, Sung-Sik;Cho, Seung-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.47-56
    • /
    • 2007
  • In this study, tile performance of a passive tuned mass damper (TMD) and a semi-active tuned mass damper (STMD) was evaluated in terms of seismic response control of elastic and inelastic structures under seismic loads. First, elastic displacement spectra were obtained for the damped structures with a passive TMD, which was optimally designed using the frequency and damping ratio presented by previous study, and with a STMD proposed in this study. The displacement spectra confirm that STMD provides much better control performance than passive md with less stroke. Also, the robustness or the TMD was evaluated by off-tuning the frequency of the TMD to that of the structure. Finally, numerical analyses were conducted for an inelastic structure of which hysteresis was described by Bouc-Wen model and the results indicated that the performance of the passive TMD of which design parameters were optimized for a elastic structure considerably deteriorated when the hysteretic portion or the structural responses increased, while the STMD showed about 15-40% more response reduction than the TMD.

New Vibration Control Approach of Adjacent Twin Structures using Connecting Tuned Mass Damper (연결 동조질량감쇠기를 이용한 인접한 쌍둥이 구조물의 새로운 진동제어)

  • Ok, Seung-Yong;Kim, Seung-Min
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.92-97
    • /
    • 2017
  • This study deals with new application method of the connecting tuned mass damper (CTMD) system for efficient vibration control of adjacent twin structures which have the same dynamic properties such as natural frequency and damping characteristics to each other. In the existing research, the vibration control of the twin structures has a limit to the application of the conventional damper-connection method of the twin structures. Due to the same frequency characteristics leading to the equally vibrating behaviors, it is impossible to apply the conventional connection method of the adjacent structures. In order to overcome these limitations induced by the symmetry of the dynamic characteristics, we propose a new CTMD-based control system that adopts the conventional connection configuration but unbalances the symmetric system by arranging the control device asymmetrically and then can finally achieve the efficient control performance. In order to demonstrate the applicability of the proposed system, numerical simulations of the optimally designed proposed system have been performed in comparison with the optimal design results of the existing independent single tuned mass damper (STMD) control system and the another optimal control system previously proposed by the same author, hereafter called CTMD-OsTMD. The comparative results of the control performances among STMD, CTMD-OsTMD and the proposed CTMD systems verified that the newly proposed control system can be a control-efficient and cost-effective system for vibration suppression of the two adjacent twin structures.

Seismic Response Control of Arch Structures using Semi-active TMD (준능동 TMD를 이용한 아치구조물의 지진응답제어)

  • Kang, Joo-Won;Kim, Gee-Cheol;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • In this study, the possibility of seismic response control of semi-active tuned mass damper (TMD) for spatial structures has been investigated. To this end, an arch structure was used as an example structure because it has primary characteristics of spatial structures and it is a comparatively simple structure. A TMD and semi-active TMD were applied to the example arch structure and the seismic control performance of them were evaluated based on the numerical simulation. In order to regulate the damping force of the semi-active TMD, groundhook control algorithm, which is widely used for semi-active control, was used. El Centro (1940) and Northridge (1994) earthquakes and harmonic ground motion were used for performance evaluation of passive TMD and semi-active TMD. Based on the analytical results, the passive TMD could effectively reduce the seismic responses of the arch structure and it has been shown that the semi-active TMD more effectively decreased the dynamic responses of the arch structure compared to the passive TMD with respect to all the excitations used in this study.

  • PDF

RSM-based Practical Optimum Design of TMD for Control of Structural Response Considering Weighted Multiple Objectives (가중 다목적성을 고려한 구조물 응답 제어용 TMD의 RSM 기반 실용적 최적 설계)

  • Do, Jeongyun;Guk, Seongoh;Kim, Dookie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.113-125
    • /
    • 2017
  • In spite of bulk literature about the tuning of TMD, the effectiveness of TMD in reducing the seismic response of engineering structures is still in a row. This paper deals with the optimum tuning parameters of a passive TMD and simulated on MATLAB with a ten-story numerical shear building. A weighted multi-objective optimization method based on computer experiment consisting of coupled with central composite design(CCD) central composite design and response surface methodology(RSM) was applied to find out the optimum tuning parameters of TMD. After the optimization, the so-conceived TMD turns out to be optimal with respect to the specific seismic event, hence allowing for an optimum reduction in seismic response. The method was employed on above structure by assuming first the El Centro seismic input as a sort of benchmark excitation, and then additional recent strong-motion earthquakes. It is found that the RSM based weighted multi-objective optimized damper improves frequency responses and root mean square displacements of the structure without TMD by 31.6% and 82.3% under El Centro earthquake, respectively, and has an equal or higher performance than the conventionally designed dampers with respect to frequency responses and root mean square displacements and when applied to earthquakes.