• Title/Summary/Keyword: 동적 NAT

Search Result 112, Processing Time 0.02 seconds

Alarm Diagnosis Monitoring System of RCP using Self Dynamic Neural Networks (자기 동적 신경망을 이용한 RCP의 경보 진단 시스템)

  • Ryoo, Dong-Wan;Kim, Dong-Hoon;Lee, Cheol-Kwon;Seong, Seung-Hwan;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2488-2491
    • /
    • 2000
  • A Neural network is possible to nonlinear function mapping and parallel processing. Therefore It has been developing for a Diagnosis system of nuclear plower plant. In general Neural Networks is a static mapping but Dynamic Neural Network(DNN) is dynamic mapping. When a fault occur in system, a state of system is changed with transient state. Because of a previous state signal is considered as a information. DNN is better suited for diagnosis systems than static neural network. But a DNN has many weights, so a real time implementation of diagnosis system is in need of a rapid network architecture. This paper presents a algorithm for RCP monitoring Alarm diagnosis system using Self Dynamic Neural Network(SDNN). SDNN has considerably fewer weights than a general DNN. Since there is no interlink among the hidden layer. The effectiveness of Alarm diagnosis system using the proposed algorithm is demonstrated by applying to RCP monitoring in Nuclear power plant.

  • PDF

Numerical Investigation of Frictional Effects and Compensation of Frictional Effects in Split Hopkinson Pressure Bar (SHPB) Test (수치해석을 이용한 SHPB 시험의 마찰영향 분석과 보정에 대한 연구)

  • Cha, Sung-Hoon;Shin, Hyun-Ho;Kim, Jong-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.511-518
    • /
    • 2010
  • The split Hopkinson pressure bar (SHPB) has been widely used to determine the mechanical properties of materials at high loading rates. However, to ensure test reliability, the source of measurement error must be identified and eliminated. During the experiment, specimens were placed between the incident and the transmit bar. Contact friction between the test bars and specimen may cause errors. In this study, numerical experiments were carried out to investigate the effect of friction on the test results. In the SHPB test, the stress measured by the transmitted bar is assumed to be the flow stress of the test specimen. However, performing numerical experiments, it was shown that the stress measured by the transmit bar is axial stress components. When the contact surface is frictionless, the flow stress and axial stress of the specimen are approximately equal. On the other hand, when the contact surface is not frictionless, the flow stress and axial stress are no longer equal. The effect of friction on the difference between the flow stress and axial stress was investigated.

Development of Pressure Observer to Measure Cylinder Length of Harbor-Construction Robot (항만공사용 로봇의 실린더 길이 측정을 위한 압력 옵서버 개발)

  • Kim, Chi-Hyo;Park, Kun-Woo;Kim, Tae-Sung;Lee, Min-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.299-308
    • /
    • 2011
  • In this study, we develop a pressure observer to measure the cylinder length of a harbor-construction robot. For the robot control, sensors are required to measure the length of a hydraulic cylinder. The cylinder-position sensor is relatively expensive when the operating environment prohibits external approaches for the measurement of the cylinder position. LVDT or linear scales are usually mounted on the outside of the cylinder, which causes poor durability on a construction site. We use a pressure sensor to indirectly estimate the length of the cylinder. The pressure sensor is mounted inside a hydraulic valve box so that it is protected by the box and easy to waterproof for an underwater robot. By treating oil as a compressible fluid, we derive the nonlinear pressure dynamics as a function of the cylinder position, velocity, and pressure. The recursive least squares (RLS) algorithm is applied to identify the dynamic parameters, and the pressure observer estimates the cylinder position through the pressure acting on the head and the rod of the hydraulic cylinder. The position accuracy is relatively low, but it is acceptable for a construction robot that handles large armor stones.

Comparison of GPU-Based Numerous Particles Simulation and Experiment (GPU 기반 대량입자 거동 시뮬레이션과 실험비교)

  • Park, Sang Wook;Jun, Chul Woong;Sohn, Jeong Hyun;Lee, Jae Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.751-756
    • /
    • 2014
  • The dynamic behavior of numerous grains interacting with each other can be easily observed. In this study, this dynamic behavior was analyzed based on the contact between numerous grains. The discrete element method was used for analyzing the dynamic behavior of each particle and the neighboring-cell algorithm was employed for detecting their contact. The Hertzian and tangential sliding friction contact models were used for calculating the contact force acting between the particles. A GPU-based parallel program was developed for conducting the computer simulation and calculating the numerous contacts. The dam break experiment was performed to verify the simulation results. The reliability of the program was verified by comparing the results of the simulation with those of the experiment.

Vortex Tube Modeling Using the System Identification Method (시스템 식별 방법을 이용한 볼텍스 튜브 모델링)

  • Han, Jaeyoung;Jeong, Jiwoong;Yu, Sangseok;Im, Seokyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.321-328
    • /
    • 2017
  • In this study, vortex tube system model is developed to predict the temperature of the hot and the cold sides. The vortex tube model is developed based on the system identification method, and the model utilized in this work to design the vortex tube is ARX type (Auto-Regressive with eXtra inputs). The derived polynomial model is validated against experimental data to verify the overall model accuracy. It is also shown that the derived model passes the stability test. It is confirmed that the derived model closely mimics the physical behavior of the vortex tube from both the static and dynamic numerical experiments by changing the angles of the low-temperature side throttle valve, clearly showing temperature separation. These results imply that the system identification based modeling can be a promising approach for the prediction of complex physical systems, including the vortex tube.

Optimum Design of a Coil Spring for Improving the Performance of a Spring -Operated Mechanism (스프링 조작기의 성능 개선을 위한 코일스프링의 최적 설계)

  • Lee, Dae Woo;Sohn, Jeong Hyun;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.275-280
    • /
    • 2016
  • In this study, a release test bed is designed to evaluate the dynamic behaviors of a coil spring. From the release tests, the dynamic behaviors of a coil spring are analyzed. A lumped parameter spring model was established for numerical simulation of a spring. The design variables of a coil spring are optimized by using the design of experiments approach. Two-level factorial designs are used for the design optimization, and the primary effects of the design variables are analyzed. Based on the results of the interaction analysis and design sensitivity analysis, the level of the design variables is rearranged. Finally, the mixed-level factorial design is used for the optimum design process. According to the optimum design of the opening spring, the dynamic performance of the spring-operated mechanism increases by 2.90.

Structural Analysis of Floating Offshore Wind Turbine Tower Based on Flexible Multibody Dynamics (탄성 다물체계 동역학을 기반으로 한 부유식 해상 풍력 발전기 타워의 구조 해석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Ku, Namkug;Jo, A-Ra;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1489-1495
    • /
    • 2012
  • In this study, we perform the structural analysis of a floating offshore wind turbine tower by considering the dynamic response of the floating platform. A multibody system consisting of three blades, a hub, a nacelle, the platform, and the tower is used to model the floating wind turbine. The blades and the tower are modeled as flexible bodies using three-dimensional beam elements. The aerodynamic force on the blades is calculated by the Blade Element Momentum (BEM) theory with hub rotation. The hydrostatic, hydrodynamic, and mooring forces are considered for the platform. The structural dynamic responses of the tower are simulated by numerically solving the equations of motion. From the simulation results, the time history of the internal forces at the nodes, such as the bending moment and stress, are obtained. In conclusion, the internal forces are compared with those obtained from static analysis to assess the effects of wave loads on the structural stability of the tower.

A Numerical Analysis on Application of Laser Peening to Dissimilar Metal Welds in a Safety Injection Nozzle of Integral Reactor (일체형 원자로 안전주입 노즐 이종금속 용접부에 대한 레이저 피닝 적용의 수치 해석적 연구)

  • Seo, Joong-Hyun;Kim, Jong-Sung;Jhung, Myung-Jo;Ryu, Yong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.599-608
    • /
    • 2012
  • A numerical analysis has been performed through implicit dynamic finite element analysis using the commercial package, ABAQUS in order to investigate effect of laser peening on welding residual stress mitigation of dissimilar metal welds in a safety injection nozzle of integral reactor. The implicit dynamic finite element analysis are compared with the previous experimental results. By comparison, it is identified that the implicit dynamic finite element analysis is valid for residual stress mitigation via laser peening. Implicit static finite element residual stress analysis has been performed for the dissimilar metal welds subject to inner repair welding. The analysis results represent that both axial and hoop residual stresses are tensile on inner surface of safety injection nozzle due to inner repair welding. Also Parametric study has performed to investigate effect of laser peening variables such as maximum impact pressure, duration time of pressure, spot diameter and peening direction on the welding residual stress mitigation. As a result, it is found that laser peening has the preventive maintenance effect to mitigate mainly residual stresses of region near inner surface.

Static Fluid-Structure Coupled Analysis of Low-Pressure Final-Stage Turbine Blade (발전용 저압터빈 최종단 블레이드의 정적 유체-구조 연계해석)

  • Kwon, Sun-Guk;Lee, Young-Shin;Bae, Yong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1067-1074
    • /
    • 2010
  • In this study, a loosely coupled fluid-structure interaction (FSI) analysis was conducted for a low-pressure (LP) final-stage rotor blade. Preliminary FSI analyses of a $15^{\circ}$ sweptback wing and a NASA Rotor 37 compressor blade were performed for verifying the boundary conditions. The results were compared with the established literatures for each model. The FSI analysis of the $15^{\circ}$ sweptback wing was carried out under both stable and unstable conditions. The excessive deformation of the wing was observed within 0.05 s under the unstable condition which is higher than the divergence speed of a wing compared with the stable condition. On the basis of the results of a steady-state study, an unsteady state FSI analysis was conducted for a NASA Rotor 37. Different deformations were observed at trailing edge of the blade in the static FSI and dynamic FSI analysis. A 3D FE model of a LP rotor was generated from the span-wise section data. In order to develop a reasonable model, an impact test was performed and compared to the FE model. Using this FE model, the steady-state FSI analysis was performed successfully.

Beam deflection using photorefractive volume grating in Ce-SBN:60 crystal (Ce-SBN:60결정에서 광굴절 부피격자를 이용한 광편향)

  • Ahn, Jun-Won;Kim, Nam;Lee, Kwon-Yeon;Kim, Hye-young;Won, Yong-Hyup
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.315-319
    • /
    • 1997
  • In photorefractive crystals, light deflection is achieved by dynamic photorefractive volume grating, which is induced by the interference of two writing beams. In this paper, we implemented and analyzed the light deflector using Ce-SBN:60 crystals, which is doped with CeO$_2$ and photorefractive effect is induced by low intensity. And we measured maximum coupling coefficient, effective charge density, diffraction efficiency as the intensity ratio and response time.

  • PDF