• Title/Summary/Keyword: 동적 자유도

Search Result 391, Processing Time 0.02 seconds

A Dynamic Analysis of PSC Box Bridge Varying Span Lengths for Increased Speeds of KTX (고속철 속도변화에 대한 PSC박스 교량의 경간길이 별 동적해석)

  • Oh, Soon Taek;Lee, Dong Jun;Shim, Young Woo;Yun, Jun Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.204-211
    • /
    • 2011
  • A dynamic analysis procedure is developed to provide a better estimation of the dynamic responses of bridge during the passage of high speed railway vehicles. Particularly, a three dimensional numerical model including the structural interaction between high speed vehicles, bridges and railway endures to analyse accurately and evaluate with in-depth parametric studies for dynamic responses of various bridge span lengths running KTX railway locomotive up to increasing maximum speed(450km/h). Three dimensional frame element is used to model the simply supported pre-stressed concrete (PSC) box bridges for four span lengths(40~25m). Track irregularity employed as a stationary random process from the given spectral density functions and irregularities of both sides of the track are assumed to have high correlation. The high-speed railway vehicle (KTX) is used as 38-degree of freedom system. Three displacements (Vertical, lateral, and longitudinal) as well as three rotational components (Pitching, rolling, and yawing) are considered in the 38-degree of freedom model. The dynamic amplification factors are evaluated by the developed procedure under various traveling conditions, such as track irregularity camber, train speed and ballast. The dynamic analysis such as Newmark-${\beta}$ and Runge-Kutta methods which are able to analyse considering the dynamic impact factors are compared and contrasted.

A Study of the Vibration Safety Criterion on the Dynamic Behavior of Buried Pipeline with the Free Ends (양단자유 경계조건을 가진 매설관의 동적거동에서 진동안전 기준에 관한 연구)

  • 이병길;정진호;장봉현;안명석
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.13-26
    • /
    • 2004
  • This work reports results of our study on the dynamic response of buried pipelines depending on their boundary conditions. We have studied behavior of the buried pipelines both along the axial and the transverse direction with a boundary condition of free ends. The buried pipelines are modeled as beams on elastic foundation while the seismic wave as a ground displacement in the form of a sinusoidal wave. The natural frequency, its mode, and the effect of parameters have been interpreted in terms of the free vibration. In order to investigate the response on the earthquake, the resulting frequency and the mode shape obtained from the free vibration have been utilized to derive the mathematical formula for the farced vibration. We have also completed the computer program to simulate the time-displacement graphs of the pipe lines with free ends for both cases of vibrations.

Development of a Simplified Dynamic Analysis Procedure for Offshore Collisions (해양구조물 충돌의 간이 동적해석법 개발)

  • Sang-Rai,Cho
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.72-82
    • /
    • 1990
  • A simple numerical analysis procedure has been proposed to trace the response of unstiffened offshore tubular members subjected to lateral impacts and eventually to estimate the consequential extent of damage. In the procedure a tubular member is reduced to a spring-mass system having two degrees-of-freedom. one for local denting deformation and the other for that of overall bending. Results of impact tests have been correlated with those of numerical analysis in order to achieve an empirical representation of the strain-rate sensitivity and other dynamic effects upon the spring coefficient for bending deformation. The theoretical estimates of extents of damage correlate reasonably well with those obtained in experiments.

  • PDF

Application of Perturbation Method to the Dynamic Analysis of Free-free Beam (자유-자유보의 동적해석에 대한 섭동법의 적용)

  • Kwak, Moon-K
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.46-52
    • /
    • 2005
  • This paper is concerned with the application of perturbation method to the dynamic analysis of free-free beam. In general, the rigid-body motions and elastic vibrations are analyzed separately. However, the rigid-body motions cause vibrations and elastic vibrations also affect rigid-body motions in turn, which indicates that the rigid-body motions and elastic vibrations are coupled in nature. The resulting equations of motion are hybrid and nonlinear. We can discretize the equations of motion by means of admissible functions but still we have to cope with nonlinear equations. In this paper, we propose the use of perturbation method to the coupled equations of motion. The resulting equations consist of zero-order equations of motion which depict the rigid-body motions and first-order equations of motion which depict the perturbed rigid-body motions and elastic vibrations. Numerical results show the efficacy of the proposed method.

Free Field Response Analysis Using Dynamic Fundamental Solution (다층반무한 기본해를 이용한 자유장응답해석)

  • 김문겸;임윤묵;김민규;이종우
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.83-91
    • /
    • 2001
  • 본 연구에서는 2차원 평면상에서 자유장응답 해석을 위하여 유한요소-경계요소 조합에 의한 수치해석기법을 개발하였다. 전체 계를 외부영역과 내부영역으로 구분하였다. 외부영역은 동적 다층반무한 기본해를 이용한 경계요소로 모형화되고 내부영역은 유한요소로 모형화하여 조합하였다. 다층지반의 외부에서 입사하는 지진에 의한 지진응답해석을 수행하기 위하여 동적기본해를 이용한 자유장응답해석을 수행하였다. 지진응답해석에서는 지반의 전단병형률에 따라 변화하는 비선형특성을 모형화하기 위해 등가선형화기법을 적용하였다. 지진응답해석의 검증에 의하여 해석결과를 상용프로그램의 결과와 비교하였다. 결과적으로 지진응답해석을 효과적으로 수행할 수 있는 수치해석기법을 개발하였고 구조물이 있는 경우로의 확장돠 가능하게 되었다.

  • PDF

Assessment of the Seismic Capacity of Structure Using Pseudodynamic Test (유사동적 실험법을 이용한 구조물의 내진 성능 평가)

  • 김대곤;김대영;안재현;박칠림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.49-57
    • /
    • 1997
  • It is necessary to conduct researches about seismic design and analysis to protect various structures from earthquakes which are one of the most destructive natural disaster to human civilization. To assess the seismic capacity of structure, not only analytical but also experimental researches are important. Currently, pseudodynamic test known as computer-actuator on-line test is one of the available test methods to assess seismic capacity of structure without using shaking table. In this paper seismic capacity of simple one-degree of freedom structure was estimated by pseudodynamic test. Good agreement between the experimental and analytical results was obtained. Better results would be obtained when more sophisticated measuring and controlling instruments are available.

  • PDF

Theoretical Investigation of 2DOF Vibrating System and Its Application to Dynamic Vibration Absorber (2자유도 진동계에 관한 이론적 고찰 및 진동흡진기로의 응용)

  • Jang, Seon-Jun;Brennan, M.J.;Rustigh, E.;Jung, Hyung-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.371-377
    • /
    • 2009
  • In this paper, the dynamic characteristic of vibrating system which has translational and rotational degrees of freedom is studied. The moment of inertia of the system is modeled here as the inerter and the equivalent model to the system is proposed using dynamic stiffness method. It is shown that the size of inerter plays a major role to determine the dynamic characteristic of the system. This two degree of freedom system(DOF) is applied as a dynamic vibration absorber(DVA) to the elimination of single peak of main body. The solution for the undamped DVA is presented in analytical form while the damped DVA is designed using fixed point theory. The numerical examples are presented for verifying the methods.

Study of Effects of Measurement Errors in Damage Detection (동적 측정오차가 손상탐지에 미치는 영향에 관한 연구)

  • Kim, Ki-Ook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.218-224
    • /
    • 2011
  • A modal method is presented for the investigation of the effects of measurement errors in damage detection for dynamic structural systems. The structural modifications to the baseline system result in the response changes of the perturbed structure, which are measured to determine a unique system in the inverse problem of damage detection. If the numerical modal data are exact, mathematical programming techniques can be applied to obtain the accurate structural changes. In practice, however, the associated measurement errors are unavoidable, to some extent, and cause significant deviations from the correct perturbed system because of the intrinsic instability of eigenvalue problem. Hence, a self-equilibrating inverse system is allowed to drift in the close neighborhood of the measured data. A numerical example shows that iterative procedures can be used to search for the damaged structural elements. A small set of selected degrees of freedom is employed for practical applicability and computational efficiency.

Dynamic Analysis of Highway Bridges by 3-D. Vehicle Model Considering Tire Enveloping (타이어 접지폭을 고려한 3차원 차량모델에 의한 도로교의 동적해석)

  • Chung, Tae Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.989-999
    • /
    • 2006
  • In this paper, numerical analysis method to perform linear dynamic analysis of bridge considering the road surface roughness and bridge-vehicle interaction when vehicle is moving on bridge is presented. The vehicle and bridge are modeled as three-dimension where contact length of tire and pitching of tandem spring are considered and single truck with 2-axles and 3- axles, and tractor-trailer with 5-axles are modeled as 7-D.O.F., 8-D.O.F., and 14-D.O.F., respectively. Dynamic equations of vehicle are derived from the Lagrange's equation and solution of the equation is obtained by Newmark-${\beta}$ method. The surface roughness of bridge deck for this analysis is generated from power spectral density (PSD) function. Beam element for the main girder, shell element for concrete deck and rigid link between main girder and concrete deck are used. The equations of the motion of bridges are solved by mode-superposition procedures. The proposed procedure is validated by comparing the results with the experimental data by Whittemore and Fenves.

Dynamics Responses of Railway Bridges for Track Irregularities (궤도의 불규칙성을 고려한 철도교량의 동적응답분석)

  • 박흥석;이용선;이상호;김상효
    • Computational Structural Engineering
    • /
    • v.11 no.3
    • /
    • pp.253-262
    • /
    • 1998
  • 본 연구에서는 경부고속철도의 주요 교량형식인 PSC 박스교량을 3차원 뼈대요소를 사용하여 모형화하였으며, 궤도불규칙성의 형상은 지수 스펙트럴 밀도함수를 사용하여 생성시켰다. 경부고속철도차량(K-TGV)중 동력차는 17자유도의 3차원 주행열차로 모형화하였고, 이러한 교량, 궤도불규칙성 및 차량 모형을 이용하여 교량과 차량의 상호작용을 해석할 수 있는 프로그램을 개발하였다. 동적해석을 위한 교량과 차량의 운동방정식은 Lagrange 방정식을 사용하여 유도하였으며, 운동방정식의 수치해석에는 Newmark-β법을 사용하였다. 개발된 프로그램을 이용하여 동력차의 주행에 의한 교량의 시간이력곡선을 구하였으며, 궤도불규칙성의 영향을 분석하였다. 또한 도상의 유무에 따른 교량동적거동의 특성과 함께 열하중의 편심의 영향도 분석하였다.

  • PDF