본연구에서는 센서의 융합을 통하여 환경을 인식하며, 주변환경에 대한 지식을 갱신, 학습할수 있는 방법론을 연구하며, 동적인 장애물의 감지및 움직임 예측에 기반한 지능적 회피 알고리즘과 AHP를 이용한 Navigation Strategy수정과 이동 로봇 스스로 최적의 결과를 낼수 있게 개선 시키는 알고리즘을 구현한다. 그와 더불어 AHP를 이용하여 Navigation Performance를 최대로 높일 수 있는 방향을로 진화시키는 알고리즘을 구현한다. 또한 부여된 임무수행을 위한 목표물 추적을 위한 비전 시스템에서의 대상체 추출및 인식 알고리즘을 개발하며 인간뇌의 환경인식 체계와 유사한 방식의 Map building기법을 연구한다.
목적: 수용체 결합능 정량화를 위해서는 방사성추적자의 동태를 충분히 관찰하기 위해서 보통 뇌 PET 영상을 60-120분 정도 얻어야 한다. 이처럼 장기간 PET 영상을 얻게 되는 경우 보통 피험자의 수의적/불수의적 움직임을 피할 수 없고 이러한 피험자의 머리 움직임은 재구성된 PET 영상의 공간해상도를 저하시키고 측정된 방사능 농도의 정확성을 떨어뜨리는 요인이 된다. 이 연구에서는 동적 영상 정보만을 이용하여 피험자의 머리 움직임을 보정할 수 있는 방법을 개발하고 이를 피험자의 움직임이 불가항력적인 뇌활성화 도파민 D2 수용체 영상에 적용하여 움직임 보정이 리간드 결합능 및 외부 자극에 의한 도파민 유리(release) 정량화에 미치는 영향을 평가하였다. 대상 및 방법: 4명의 정상인 자원자에서 비디오 게임에 의한 도파민 유리를 평가하기 위한 실험으로 순간+연속 주입법을 이용하여 얻은 $[^{11}C]raclopride$ PET 영상을 이용하였으며 실제로 도파민 유리를 계산하기 위해서 필요한 프레임들만을 선별해서 영상 정합 기법을 적용하였다. 즉, $[^{11}C]raclopride$을 투여한 후 선조체에서의 리간드의 특이적 결합이 항정상태(steady state)에 최초로 도달하는 과제 수행 전 (30-50 분) 영역과, 비디오 게임 과제에 의해 도파민이 유리된 후 다시 항정상태에 도달하는 70-90분, 비디오 게임을 멈춘 후 다시 항정상태에 도달하는 110-120 분 데이터에만 움직임 보정 기법을 적용하는 방식이다. 각 항정상태 구간은 보통 2-4개의 프레임으로 구성되므로 먼저 이들 프레임들간의 영상정합을 수행(intra-condition registration)하여 평균 영상을 만들고 이들 평균 영상들을 정합하여 최종적으로 움직임 보정(inter-condition registration)을 하였다. 게임 수행 전후의 도파민유리를 평가하기 위하여 머리 움직임 보정 전후의 게임 과제 수행 전후의 결합능 백분율 변화를 구하였으며 각 조건에 대한 결합능 파라미터 영상을 구하고 움직임 보정 전후의 결합능 영상의 화소별 차이를 SPM2를 이용한 t-test(쌍체 검정)로 알아보았다. 결과: 움직임 보정 전후의 영상을 비교하였을 때, 움직임 보정 전 영상에서, 게임 수행시 영상이 게임을 위한 스크린 위치에 따른 시야 변동으로 게임 수행전 영상에 비하여 앞쪽 아래로 기울어져 있음을 알 수 있었으며 이러한 경향은 대상 피험자 모두에서 관찰되었다. 보정 전 영상으로부터 측정된 비디오 게임에 의한 도파민 유리는 putamen에서 29%, caudate head에서 57%, ventral striatum에서 17% 였으나, 보정 후 영상으로부터 구한 도파민 유리는 이들 영역에서 각각 3.9%, 14,1%, 0.6%로 움직임 보정을 하지 않은 경우 선조체 모든 구소물에서 결합능 감소, 즉 게임에 의한 도파민 유리가 과대평가됨을 알 수 있다. SPM 분석결과에서도 움직임을 보정하지 않은 영상을 이용한 경우, 선조체 구조물에서의 결합능 감소와 움직임에 의한 영상강도 저하가 복합적으로 영향을 주어 결합능 차이가 매우 유의하게 평가되었으나 움직임 보정 후 영상을 이용하여 비교한 경우, 결합능 변화가 선조체 영역에서 국한되어 나타나며 그 유의성이 움직임 보정 전에 비하여 낮음을 알 수 있었다. 결론: 뇌활성화 과제 수행시에 동반되는 피험자의 머리 움직임에 의하여 도파민 유리가 과대평가되었으며 이는 이 연구에서 제안한 영상정합을 이용한 움직임 보정기법에 의해서 개선되었다.
배경 영상에서 움직이는 물체 검출은 대상의 정확한 분류나 움직임, 패턴의 이해 또는 감시 시스템에 활용이 된다. 동적 물체 검출을 위한 여러 방법이 연구되고 제시되었으며, 그 중 일반적으로 차 영상 검출 방법이 많이 사용된다. 이는 시간적으로 연속된 영상 프레임간의 차를 구하고, 이 차 영상에 임계값을 설정하여 이진 영상을 만들어 물체를 검출한다. 기존 여러 연구에서는 이 임계값을 대부분을 고정하여 사용하거나 특정 환경에만 적합하게 설정하였다. 본 논문에서는 주변 환경에 적응하여 임계값을 자동으로 설정하는 방법을 제시하였고, 차 영상 검출 방법에 실제 적용하여 기존 방법에 비해 더 나은 결과를 확인하였다.
사생활 보호에 대한 인식이 커지고, 인터넷 시대에 접어들면서 네트워크 기반의 보안시스템의 개발이 활발하다. 실시간 비디오 카메라를 통한 움직이는 물체를 검출하기 위해서는 불필요한 잡음이나 조명의 변화에 대처해야 한다. 이러한 많은 요소들을 고려하여 움직이는 물체를 검출하려면 많은 계산 복잡도를 가지게 된다. 또한, 카메라의 영상크기가 증가함에 따라 움직이는 물체를 검출하기 위해서 더 많은 계산 복잡도를 가지게 된다. 본 논문에서는 기존의 통상적인 움직임 검출방법 과 적응적 배경방식인 '물체 검출을 위한 동적인 장면의 베이시안 모델링 기반 물체 검출 방법'을 분석하고, 실시간으로 처리되는 동적 비디오 영상에서 이동 물체를 검출하는 과정에서의 영상의 크기가 커지고, 이동하는 물체의 개수가 많아짐에 따라 발생되는 계산의 복잡도를 'CPU 성능과 영상 resize 를 이용한 계산 복잡도 감소 방법'을 통해 초당 프레임 처리속도를 유지시키는 방법을 제시한다.
본 연구에서는 동적 수신호 인식문제를 위하여 CNN 모델을 사용한 특징추출 기법과, FMM 신경망을 사용한 특징 분석 기법을 상호 결합한 형태의 패턴 인식 모델을 제안한다. 수신호 인식을 위하여 영상패턴에서 대상물의 움직임 정보에 기초한 3 차원 형식의 데이터 표현 기법과, 이로부터 인식을 위한 특징추출 기법을 제시한다. 특징추출 모듈에서는 3 차원으로 확장된 구조의 수용영역을 고려한 CNN 모델을 제안하며, 이로부터 학습패턴에서 특징점의 공간적 변이에 대한 영향을 최소화할 수 있음을 고찰한다. 또한 인식효율의 개선을 위하여 방대한 양의 특징집합으로부터 효과적인 특징을 선별하기 위한 방법론으로서 WFMM 모델 기반의 특징분석 기법을 정의하고 이로부터 선별된 특징을 사용하는 인식 기법을 소개한다.
본 논문에서는 계산 효율적이고 노이즈에 강건한 비디오 객체 분할 알고리즘을 제안한다. 움직임 분할과 색 분할을 효율적으로 결합한 시공간 분할 방법의 구현을 위해 SOM 기반의 계층적 군집 방법을 도입하여 특징 벡터들의 군집 관점에서 분할 과정을 해석함으로써 기존의 객체 분할 방법에서 정확한 분할 결과를 얻기 위해서 요구되어지는 많은 연산량과 노이즈에 의한 시스템의 성능 저하 문제를 최소화한다. 움직임 분할 과정에서는 움직임 추정 에러에 의한 영향을 최소화하기 위해서 MRF 기반의 MAP 추정 방법을 이용하여 계산한 움직임 벡터의 신뢰도를 이용한다. 또한 움직임 분할의 성능 향상을 위해서 움직임 신뢰도 히스토그램을 이용한 노이즈 제거 과정을 거칠 뿐만 아니라 자동으로 장면 내에 존재하는 객체의 수를 구하기 위해서 군집 유효성 지표를 이용한다. 객체 추적의 성능 향상을 위해 교차 투영 기법을 이용하며, 분할 결과의 시간적 일관성 유지를 위해 동적 메모리를 이용한다. 다양한 특성을 가지는 비디오 시퀀스들을 이용한 실험을 통해 제안하는 방법이 계산 효율적이고 노이즈에 강건하게 비디오 객체 분할을 수행함은 물론 기존의 구현 방법에 비해 정확한 분할 결과를 얻을 수 있음을 확인하였다.
정서를 측정하고 나타내는 기술이 발전에 따라 문화적 보편성을 가진 얼굴표정 연구의 필요성이 증가하고 있다. 그리고 지금까지의 많은 얼굴 표정 연구들은 정적인 얼굴사진 위주로 이루어졌다. 그러나 실제 사람들은 단적인 얼굴표정만으로 정서를 인식하기 보다는 미묘한 표정의 변화나 얼굴근육의 움직임 등을 통해 정서상태를 추론한다. 본 연구는 동적인 얼굴표정이 정적인 얼굴표정 보다 정서상태 전달에서 더 큰 효과를 가짐을 밝히고, 동적인 얼굴 표정에서의 눈과 입의 정서인식 효과를 비교해 보고자 하였다. 이에 따라 15 개의 형용사 어휘에 맞는 얼굴 표정을 얼굴전체, 눈, 입의 세 수준으로 나누어 동영상과 스틸사진으로 제시하였다. 정서 판단의 정확성을 측정한 결과, 세 수준 모두에서 동영상의 정서인식 효과가 스틸사진 보다 유의미하게 높게 나타나 동적인 얼굴 표정이 더 많은 내적정보를 보여주는 것을 알 수 있었다. 또한 얼굴전체-눈-입 순서로 정서인식 효과의 차이가 유의미하게 나타났으며, 부정적 정서는 눈에서 더 잘 나타나고 긍정적 정서는 입에서 더 잘 나타났다. 따라서 눈과 입에 따른 정서인식이 정서의 긍정성-부정성 차원에 따라 달라짐을 볼 수 있었다.
압축된 동영상에서 인덱싱을 위한 장면전환 검출기법에서 기존의 방법들은 실험에 의한 고정 임계값을 설정하여 임계값 보다 크면 장면전환이라고 판단해왔다. 기존의 고정 임계값을 적용시켰을 때는 플래쉬나 카메라 움직임 등에 의한 오검출이 많은 문제점이 있었다. 본 논문에서는 장면 전환 검출을 위한 임계값을 동영상 특성 중, 장면전환점간격을 이용하여 임계값을 동적으로 변화시키는 방법이며, 고정 임계값을 사용하는 경우보다 오검출을 줄이는 향상된 장면전환 검출기법을 제안한다. 실험에서는 동영상 특성을 통계적으로 분석하여, 기존의 고정임계값과 제안한 동적임계값을 사용한 결과 값을 비교분석 하였다. 제안한 방법은 기존의 방법보다 30%정도 오검출이 줄었다.
이동 객체에 대한 추적 기술은 최근 중요성이 강조되고 있는 동영상 이해에서 가장 핵심적인 기술의 하나라 할 수 있다. 하지만, 동영상이 가지는 조명의 불안정, 객체의 크기나 형태 변화, 카메라 움직임, 그리고 중첩 등으로 인해 동영상 내의 이동 객체 추적은 많은 어려움을 가지고 있다. 객체 추적의 가장 대표적인 종래의 방법인 칼만 필터와 파티클 필터의 문제점을 개선하는 방법으로 스웜 기반의 방법이 제안되어 있으나 동적으로 변화하는 이동 객체의 특징을 반영하는 개선된 알고리즘이 요구된다. 본 논문에서는 이러한 특징을 반영하여 파티클 스웜 최적화 방법에서 사용되는 파라미터 중 가중치 값을 동적으로 변화하는 적응적 파라미터 제어 방법을 제안한다. 각 파티클을 특성에 따라 3가지 종류로 구분하고 각각 서로 다른 가중치 값을 부여하는 방식으로 객체 추적의 성능을 개선할 수 있다. 제안된 알고리즘의 적용 결과 중첩 또는 예측하기 어려운 움직임 등과 같은 객체의 비선형적인 움직임이 있는 동영상에 대해 기존 파티클 스웜 방식에 비해 현저한 성능 개선을 보이는 것을 확인할 수 있었다.
휴양지역의 평가기준 설정을 위한 다양한 시각매체의 활용가능성에 대한 관심이 높다. 그러나 기준평가를 위한 시각 매체의 유용성은 시각매체가 얼마나 정확하게 현장 상태를 반영하는가에 달려있다. 본 연구는 정적 이미지와 동적 이미지를 이용하여 산정된 조우기준을 비교함으로써 움직임의 효과를 평가하였다. 연구대상지는 무등산도립공원 내 중머리 지역이었다. 총 50명의 대학생이 실험실 조사에 참여하였으며 Photoshop과 Flash 컴퓨터 프로그램을 이용하여 제작된 정적이미지와 동적 이미지의 허용도를 평가하였다. 조사결과, 정적 이미지와 동적 이미지 간에 최대허용수에 차이가 없는 것으로 분석되었으며 전반적 조우규범측정곡선도 거의 동일한 것으로 나타났다. 이미지 노출 순서와 움직이는 사람의 비율에 따른 조우기준도 조사되었다. 그러나 본 지역과 같은 특정 상황에서 조우기준을 개발하기 위하여 정적 이미지 대신 보다 복잡한 방법을 요구하는 동적 이미지를 이용함으로써 얻는 이점은 없다고 판단된다. 보다 정교한 매체이용에 따른 장단점에 대하여 토의하였으며 다른 자원환경 평가에 움직임 또는 소리와 같은 요소들이 조우규범에 미치는 영향에 대한 보다 많은 연구가 요구된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.