• Title/Summary/Keyword: 동적 열관류율

Search Result 3, Processing Time 0.017 seconds

A Measurement Study of a Dynamic Insulator Thermal Performance (동적 단열재의 열성능 측정에 관한 연구)

  • Ko, Seon-Mi;Kang, Eun-Chul;Lee, Euy-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.361-368
    • /
    • 2010
  • Due to the insulation and the air-tightness requirement in modern buildings have resulted NBS(New Building Syndrome) and SBS(Sick Building Syndrome) of IAQ problems. Therefore, energy efficient way of solving such IAQ issues are of major concern in these days and building industries. This paper introduces a method to improve thermal performance with a DI(Dynamic Insulation) concept. The characteristic of the dynamic insulation is that the lower U-value as the higher air velocity through the DI in a micro level. A thermal performance monitoring study has been conducted to show the energy impact of porous DI over the static insulation material. The results show that up to 45% could be improved in the case with DI compared to the conventional insulation.

A Study on Ventilation and Heat Transfer Coefficient of Passive Ventilation Skin (패시브환기외피의 통기성능 및 열관류율에 대한 연구)

  • Lee, Tae-Cheol;Son, Yu-Nam;Yoon, Seong-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.679-684
    • /
    • 2012
  • This paper aims to evaluate performances of ventilation and insulation of 6types PVS(Passive ventilation skin) by numerical simulation. The results are as follows. 1) The result of Performance of ventilation by pressure difference, it was shown that the amount of ventilation changed bigger under 1Pa and amount of ventilation increased according to increase opening area (${\alpha}A$). Although same opening area of PVS, it can predict that pressure differences cause ventilation differences. 2) In case of same opening area of PVS, however, it was changed the amount of ventilation each types of PVS that is distinguished opening area by flow coefficient. 3) Dynamic U-value that represents performance of insulation PVS was similar change upper ${\alpha}A40\;cm^2/m^2$, great change in casse of 0.1 Pa pressure difference. In case of ${\alpha}A10\;cm^2/m^2$, it was changed bigger under 0.3 Pa pressure difference, ${\alpha}A20\;cm^2/m^2$ of PVS was changed under 0.2 Pa pressure difference.

Heating Power Consumption Comparison Study Between Static Insulation and Dynamic Insulation at KIER Twin Test Cell (동적 단열재를 적용한 건물에서의 에너지소비량 비교 분석)

  • Kang, Eun-Chul;Park, Yong-Dai;Lee, Euy-Joon;Yun, Tae-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.919-924
    • /
    • 2008
  • Power consumption in the building thermal load could be the sum of the building fabric conduction load, building ventilation convection load and other such as radiation loss load. Dynamic Breathing Building (DBB) is the state-of-the-art to improve the wall insulation and indoor air quality(IAQ) performance as making air flow through the wall. This heat recovery type DBB contributes the power consumption saving due to the improved dynamic U-value. KIER twin test cell with static insulation(SI) and dynamic insulation(DI) at KIER was developed to test building power consumption at the real outside conditions. Then, the actual results were compared with the theory to predict the power consumption at the KIER twin test cell and introduced the building new radiation loss factor $\alpha$ to explain the difference between the both the theory and the actual case. As the results, the power consumption at the breathing DI wall building could saved 10.8% at the 2ACH(Air change per hour) compared with conventional insulation. The building radiation loss factor $\alpha$ for this test condition to calibrate the actual test was 0.55 in the test condition.

  • PDF