• 제목/요약/키워드: 동적 신경망

검색결과 258건 처리시간 0.026초

VSS-귀한 신경망을 이용한 로보트 매니퓰레이터 제어 (Control of Robot Manipulator using VSS-Recurrent Neural Networks)

  • 최영길;김성현;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제6권4호
    • /
    • pp.39-48
    • /
    • 1996
  • 비선형 동적 시스템을 제어하기에 적합한 귀환 신경망에 대한 연구는 안정성(stability) 유도와 학습 알고리듬(learning algorithm) 개발의 두가지 방향으로 지금까지 많은 연구가 이루어져 왔다. 본 논문에서는 비선형 동적 시스템 제어시 온라인(on-line) 학습이 가능하고 안정성을 보장하도록 귀환 신경망의 학습 알고리듬에 VSS이론을 도입하여 개발한다. 또한 개발한 학습 알고리듬을 사용한 귀환 신경망을 전형적인 비선형 동적 시스템인 로보트 매니퓰레이터의 제어 시스템에 적용하고 기존의 학습 방법의 적용 결과와 비교하여 개발한 제어 알고리듬의 효용성을 입증한다.

  • PDF

신경망을 이용한 고신뢰성의 회귀분석 모델 (Regression Model With High Reliability by Using Neural Networks)

  • 조용현
    • 정보처리학회논문지B
    • /
    • 제8B권4호
    • /
    • pp.327-334
    • /
    • 2001
  • 본 논문에서는 기울기하강과 동적터널링이 조합된 학습알고리즘의 다층신경망을 이용한 고신회성의 회귀분석 모델을 제안하였다. 기울기하강은 빠른 수렴속도의 최적화가 가능하도록 하기 위함이고, 동적터널링은 국소최적해를 만났을 때 이를 벗어난 새로운 연결가중치를 설정하여 전역최적해로 수렴되도록 하기 위함이다. 또한 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 주요성분분석 기법의 속성을 살려 학습데이터의 차원을 감소시킴으로서 고차원의 학습데이터에 따른 회귀분석 모델의 제약도 동시에 해결하였다. 제안된 기법의 신경망을 3개의 독립변수 패턴을 가진 암모니아 제조공정문제와 10개의 독립변수 패턴을 가진 자동차 연비문제에 각각 적용하여 시뮬레이션한 결과, 기존의 역전과 알고리즘의 신경망이나 주요성분분석에 의한 차원을 감소시키지 않은 학습패턴을 이용한 신경망보다 각각 더욱 우수한 학습성능과 회귀성능이 있음을 확인할 수 있었다. 또한 학습패턴의 영평균 정규화로 회귀용 신경망의 성능을 더욱 더 개선하였다.

  • PDF

카오틱 신경망을 이용한 적응제어에 관한 연구 (A study on the Adaptive Neural Controller with Chaotic Neural Networks)

  • Sang Hee Kim;Won Woo Park;Hee Wook Ahn
    • 융합신호처리학회논문지
    • /
    • 제4권3호
    • /
    • pp.41-48
    • /
    • 2003
  • 본 논문은 개선된 카오틱 신경망을 이용한 비선형 시스템의 적응제어에 관한 것이다. 개선된 카오틱 신경망은 기존의 카오틱 신경망을 간략화하며 동적 특성을 강화하기 위하여 제안하였다 또한 새로운 동적 역전파 학습방법을 개발하였다. 제안된 신경회로망은 다변수 시스템의 시스템식별과 신경망 적응제어 시스템에 적용하였다. 제안된 신경망은 비선형 동적시스템에 우수한 적응성을 가지므로 시뮬레이션 결과는 우수한 성능을 보였다.

  • PDF

회귀신경망 예측 HMM을 이용한 음성 인식에 관한 연구 (A study on Speech Recognition Using Recurrent Neural Predictive HMM)

  • 박경훈;한학용;김수훈;허강인
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 하계종합학술대회논문집
    • /
    • pp.153-156
    • /
    • 2000
  • 본문에서는 예측형 회귀신경망과 HMM의 하이브리드 네트워크인 회귀신경망 예측 HMM을 구성하였다. 회귀신경망 예측 HMM은 예측형 회귀신경망을 HMM의 각 상태마다 예측기로 정의하여 일정치인 평균벡터 대신에 과거의 특징벡터의 영향을 받아 동적으로 변화하는 신경망에 의한 예측치를 이용하므로 학습패턴 설정자체가 시변성을 반영하는 동적 네트워크의 특성을 가진다. 따라서 음성과 같은 시계열 패턴의 인식에 유리하다. 회귀신경망 예측 HMM은 예측형 회귀신경망의 구조에 따라 Elman망 예측 HMM과 Jordan망 예측 HMM으로 구분하였다. 실험에서는 회귀신경망 예측 HMM의 상태수를 4, 5, 6으로 증가시켜 각 상태 수별로 예측차수 및 중간층 유니트 수의 변화에 따른 인식성능을 조사하였다. 실험결과 평가용. 데이터에 대하여 Elman망예측 HMM은 상태수가 6이고, 예측차수가 3차, 중간층 유니트의 수가 15차원일 때, Jordan망 예측 HMM의 경우 상태수가 5이고, 예측차수가 3차, 중간층 유니트의 수가 10차원일 때 각각 99.5%로 우수한 결과를 얻었다.

  • PDF

진화연산을 이용한 동적 귀환 신경망의 구조 저차원화 (Structure Pruning of Dynamic Recurrent Neural Networks Based on Evolutionary Computations)

  • 김대준;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.65-73
    • /
    • 1997
  • 본 논문에서는 진화연산을 이용하여 동적 귀환 신경망의 구조를 저차원화하는 방법을 제안한다. 일반적으로 진화연산을 개체군을 이용한 탐색 방법으로서 신경회로망의 여러 가지 다른 성질을 동시에 최적화할 필요가 있을 때 유용한 방법이다. 본 연구에서는 동적 귀환 신경망의 구조를 조차원화하기 위하여 진화 프로그래밍으로 신경망의 구조를 탐색하고, 진화전략으로 신경망의 연결강도를 학습시킴으로서 전체적인 구조를 저차원화하였다.신경망의 중간층 노드의 추가/삭제는 돌연변이 확률에 의하여 결정한다. 노드를 삭제할 경우에는 입력 연결강도의 총합이 가장 작은 노드를 삭제하고, 노드를 추가할 경우에는 미리 지정한 확률함스에 따라 노드를 추가한다. 그리고 추가된 노드와 다른 노드와의 연결방법은 서로 영향을 미칠 수 있는 모든 연결강도 중에서 확률적으로 선택하여 연결하였다. 마지막으로 제안한 저차원화 동적 귀환 신경망이 완전 연결된 신경망보다 더 좋은 성능을 얻을 수 있음을 예제로서 본 논문에서는 도립진자의 안정화 및 제어와 로봇 매니퓰레이터의 비주얼 서보잉에 적용하여 컴퓨터 시뮬레이션을 통하여 그 유효성을 확인한다.

  • PDF

유전 목 지도의 동적 확장 (Dynamic Extension of Genetic Tree Maps)

  • 하성욱;권기향;강대성
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권6호
    • /
    • pp.386-395
    • /
    • 2002
  • 본 논문에서는, 인식될 데이타에서 최적 특징을 구성할 수 있는 새로운 신경망 구조인 동적 유전 트리맵(DGTM)을 제안한다. DGTM은 기존의 신경망(neural networks)에서 고려되지 못한 데이터의 특징(feature)에 대한 중요도를 유전 알고리즘(genetic algorithm)으로 구성하고, 특징의 우선순위에 따라 트리 구조를 도입한 GTM(genetic tree-map)을 적용한다. 데이타의 유사성에 따라서 신경망의 뉴런이 동적으로 분리되고 병합될 수 있도록 동적인 기능을 갖는 DGTM(dynamic GTM)으로 확장한 방식을 제안한다.

동적 상태 진화 신경망에 기반한 팀 에이전트의 진화 (Evolving Team-Agent Based on Dynamic State Evolutionary Artificial Neural Networks)

  • 김향화;장동헌;김태용
    • 한국멀티미디어학회논문지
    • /
    • 제12권2호
    • /
    • pp.290-299
    • /
    • 2009
  • 진화하는 인공신경망은 인공지능분야와 게임 NPC의 지능 설계 분야에서 새롭게 각광을 받고 있다. 하지만 진화하는 인공신경 망을 이용하여 게임 NPC의 지능을 설계할 때 인공신경 망의 구조가 복잡함에 따라 진화와 평가에 필요한 연산량이 크며 또한 적절한 적합도 함수를 설계하지 못하면 지능적인 NPC를 설계할 수 없는 등의 문제점을 가지고 있다. 본 논문에서는 이러한 문제들을 해결하고자 동적 상태 진화 인공신경망을 제안한다. 동적 상태 진화 인공신경망은 전통적인 진화하는 인공신경망 알고리즘에 기반하여 진화 과정에서 신경망의 신경세포들 사이의 시냅스를 제거(disabled) 하거나 고정(fixed)시키는 방법을 통하여 진화와 평가과정에 소모되는 연산량을 줄이는 알고리즘이다. 본 논문은 Darwin Platform 을 테스트 베드로 축구게임 NPC의 지능 설계를 통하여 제안하는 방법의 유용성을 검증한다.

  • PDF

조합형 학습알고리즘의 신경망을 이용한 데이터의 효율적인 특징추출 (An Efficient Extraction of Data Feature By Using Neural Networks of Hybrid Learning Algorithm)

  • 조용현;윤중환;박용수
    • 정보처리학회논문지B
    • /
    • 제8B권2호
    • /
    • pp.130-136
    • /
    • 2001
  • 본 논문에서는 새로운 학습알고리즘의 비선형 주요성분분석 신경망을 이용한 영상데이터의 효율적인 특징추출에 대하여 제안한다. 제안된 학습알고리즘에서는 최적해로 수렴하는 과정에서 발생할 수도 있는 진동을 억제하여 빠른 속도의 수렴이 가능하도록 하기 위해 모멘트를 이용하였고, 국소최적해를 만났을 때 이를 벗어난 전역최적해로의 수렴을 위한 새로운 연결가중치의 설정을 위하여 동적터널링을 이용함으로써 빠른 수렴속도로 전역최적해에 수렴되도록 학습시킬 수 있다. 제안된 학습알고리즘을 이용한 신경망을 256$\times$256 픽셀의 간암영상과 128$\times$128 픽셀의 얼굴영상을 대상으로 실험한 결과, 기울기하강의 학습알고리즘을 이용한 기존 비선형 주요성분분석 신경망보다 우수한 수렴성능과 특징추출성능이 있음을 확인 할 수 있었다.

  • PDF

EBP 신경망 학습에서의 동적 초기 가중치 선택에 관한 연구 (A Study on Analysis of Dynamic Generation of Initial Weights in EBP Learning)

  • 김태훈;이일병
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 추계학술발표대회
    • /
    • pp.35-38
    • /
    • 2006
  • 다층 퍼셉트론(MLP) 학습 이론인 오류 역전파 알고리즘은 델타룰과 최급 하강법을 사용하기 때문에 학습시 많은 시간이 소요된다는 단점을 가지고 있다. 때문에 신경망에서의 잘못된 초기 가중치 선택은 오류 역전파 알고리즘을 사용하는 신경망에서의 현격한 학습 성능저하를 발생시키게 된다. 본 논문에서는 학습시 오류 역전파 알고리즘의 수렴시간을 개선하기 위한 신경망의 동적 초기 가중치 선택 알고리즘을 제안한다. 이 알고리즘은 학습전 기존의 선택 가중치와 모든 가중치가 1.0 또는 -1.0 값을 가지는 가중치 집합에서 가중치 변동률을 선측정하여 이들 중 가장 변동률이 큰 경우를 초기 가중치 집합으로 선정하게 된다. 즉, 초기의 가중치 변동률을 차후 성능을 판단하는 지표로 사용하여 잘못된 가중치 선택으로 인한 최악의 학습효율의 가능성을 배제시키고 다층 신경망의 학습특성상 평균 이상의 학습효율을 보장하는 초기 가중치 선택방법이다.

  • PDF

적응 퍼지 제어기법을 이용한 저수지 운영 최적화 (Optimal Reservoir Operation using Adaptive Neuro-Fuzzy Inference System)

  • 김진호;정건희;이도훈;이은태
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.779-783
    • /
    • 2010
  • 최근 들어 그 심각성을 더하고 있는 이상기후 현상으로 가용 수자원의 변동이 커지고 있으며, 이에 따라 수자원의 효율적인 운영이 요구되고 있다. 그러나 효율적인 운영을 위해서는 미래 유입량의 불확실성의 고려하고, 홍수 조절용량의 확보하면서도, 용수공급을 위한 저수량을 확보하고, 수력 발전을 해야 하는 복잡한 상황을 모두 고려하여야한다. 이러한 복잡한 시스템에서 하나의 최적화 기법으로는 모든 고려사항들을 만족시키는 최적해를 찾는 것은 사실상 불가능에 가깝다. 그러므로 저수지 운영의 최적화를 위한 연구에서 한 가지 이상의 기법을 조합하는 기법을 사용하게 되었다. 이러한 기법은 각 기법의 장점을 취하고 각각의 한계를 극복하기 위해 주로 사용되었다. 본 연구에서는 저수지 운영 최적화를 모의하기 위하여 대청댐에서의 저수위, 유입량, 용수이용량 등을 고려하여 방류량의 예측을 동적 계획법(Dynamic Programming Model)으로부터 동적 신경망(Dynamic Neural Network Model)과 적응 퍼지 제어기법(Adaptive Neuro-Fuzzy Inference System)을 개발하여 실제 방류량과 세 가지 최적화 방법에 의한 결과를 비교 검정하였다. 본 연구의 수행으로 인해 얻어진 결과를 요약하면 다음과 같다. 첫째, 동적 신경망과 적응 퍼지 제어기법에 의한 최적화 모의가 동적 계획법에 비해 시스템의 구축이 쉽고 유연하다. 둘째, 퍼지추론의 Membership 함수의 구축에 따라 단시간에 많은 양의 강우가 발생하는 국지성 강우에 대해서도 최적 방류량을 예측할 수 있다. 셋째, 저수지 운영 과거자료의 부족과 불확실성을 해결하면, 보다 용이하고 양호한 예측결과를 얻을 수 있을 것이다.

  • PDF