Journal of the Korean Institute of Intelligent Systems
/
v.6
no.4
/
pp.39-48
/
1996
비선형 동적 시스템을 제어하기에 적합한 귀환 신경망에 대한 연구는 안정성(stability) 유도와 학습 알고리듬(learning algorithm) 개발의 두가지 방향으로 지금까지 많은 연구가 이루어져 왔다. 본 논문에서는 비선형 동적 시스템 제어시 온라인(on-line) 학습이 가능하고 안정성을 보장하도록 귀환 신경망의 학습 알고리듬에 VSS이론을 도입하여 개발한다. 또한 개발한 학습 알고리듬을 사용한 귀환 신경망을 전형적인 비선형 동적 시스템인 로보트 매니퓰레이터의 제어 시스템에 적용하고 기존의 학습 방법의 적용 결과와 비교하여 개발한 제어 알고리듬의 효용성을 입증한다.
본 논문에서는 기울기하강과 동적터널링이 조합된 학습알고리즘의 다층신경망을 이용한 고신회성의 회귀분석 모델을 제안하였다. 기울기하강은 빠른 수렴속도의 최적화가 가능하도록 하기 위함이고, 동적터널링은 국소최적해를 만났을 때 이를 벗어난 새로운 연결가중치를 설정하여 전역최적해로 수렴되도록 하기 위함이다. 또한 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 주요성분분석 기법의 속성을 살려 학습데이터의 차원을 감소시킴으로서 고차원의 학습데이터에 따른 회귀분석 모델의 제약도 동시에 해결하였다. 제안된 기법의 신경망을 3개의 독립변수 패턴을 가진 암모니아 제조공정문제와 10개의 독립변수 패턴을 가진 자동차 연비문제에 각각 적용하여 시뮬레이션한 결과, 기존의 역전과 알고리즘의 신경망이나 주요성분분석에 의한 차원을 감소시키지 않은 학습패턴을 이용한 신경망보다 각각 더욱 우수한 학습성능과 회귀성능이 있음을 확인할 수 있었다. 또한 학습패턴의 영평균 정규화로 회귀용 신경망의 성능을 더욱 더 개선하였다.
Journal of the Institute of Convergence Signal Processing
/
v.4
no.3
/
pp.41-48
/
2003
This paper presents an indirect adaptive neuro controller using modified chaotic neural networks(MCNN) for nonlinear dynamic system. A modified chaotic neural networks model is presented for simplifying the traditional chaotic neural networks and enforcing dynamic characteristics. A new Dynamic Backpropagation learning method is also developed. The proposed MCNN paradigm is applied to the system identification of a MIMO system and the indirect adaptive neuro controller. The simulation results show good performances, since the MCNN has robust adaptability to nonlinear dynamic system.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.08a
/
pp.153-156
/
2000
본문에서는 예측형 회귀신경망과 HMM의 하이브리드 네트워크인 회귀신경망 예측 HMM을 구성하였다. 회귀신경망 예측 HMM은 예측형 회귀신경망을 HMM의 각 상태마다 예측기로 정의하여 일정치인 평균벡터 대신에 과거의 특징벡터의 영향을 받아 동적으로 변화하는 신경망에 의한 예측치를 이용하므로 학습패턴 설정자체가 시변성을 반영하는 동적 네트워크의 특성을 가진다. 따라서 음성과 같은 시계열 패턴의 인식에 유리하다. 회귀신경망 예측 HMM은 예측형 회귀신경망의 구조에 따라 Elman망 예측 HMM과 Jordan망 예측 HMM으로 구분하였다. 실험에서는 회귀신경망 예측 HMM의 상태수를 4, 5, 6으로 증가시켜 각 상태 수별로 예측차수 및 중간층 유니트 수의 변화에 따른 인식성능을 조사하였다. 실험결과 평가용. 데이터에 대하여 Elman망예측 HMM은 상태수가 6이고, 예측차수가 3차, 중간층 유니트의 수가 15차원일 때, Jordan망 예측 HMM의 경우 상태수가 5이고, 예측차수가 3차, 중간층 유니트의 수가 10차원일 때 각각 99.5%로 우수한 결과를 얻었다.
Journal of the Korean Institute of Intelligent Systems
/
v.7
no.4
/
pp.65-73
/
1997
This paper proposes a new method of the structure pruning of dynamic recurrent neural networks (DRNN) using evolutionary computations. In general, evolutionary computations are population-based search methods, therefore it is very useful when several different properties of neural networks need to be optimized. In order to prune the structure of the DRNN in this paper, we used the evolutionary programming that searches the structure and weight of the DRNN and evolution strategies which train the weight of neuron and pruned the net structure. An addition or elimination of the hidden-layer's node of the DRNN is decided by mutation probability. Its strategy is as follows, the node which has mhnimum sum of input weights is eliminated and a node is added by predesignated probability function. In this case, the weight is connected to the other nodes according to the probability in all cases which can in- 11:ract to the other nodes. The proposed pruning scheme is exemplified on the stabilization and position control of the inverted-pendulum system and visual servoing of a robot manipulator and the effc: ctiveness of the proposed method is demonstrated by numerical simulations.
In this paper, we suggest dynamic genetic tree-maps(DGTM) using optimal features on recognizing data. The DGTM uses the genetic algorithm about the importance of features rarely considerable on conventional neural networks and introduces GTM(genetic tree-maps) using tree structure according of the priority of features. Hence, we propose the extended formula, DGTM(dynamic GTM) has dynamic functions to separate and merge the neuron of neural network along the similarity of features.
Evolutionary Artificial Neural Networks (EANNs) has been highly effective in Artificial Intelligence (AI) and in training NPCs in video games. When EANNs is applied to design game NPCs' smart AI which can make the game more interesting, there always comes two important problems: the more complex situation NPCs are in, the more complex structure of neural networks needed which leads to large operation cost. In this paper, the Dynamic State Evolutionary Neural Networks (DSENNs) is proposed based on EANNs which deletes or fixes the connection of the neurons to reduce the operation cost in evolution and evaluation process. Darwin Platform is chosen as our test bed to show its efficiency: Darwin offers the competitive team game playing behaviors by teams of virtual football game players.
본 논문에서는 새로운 학습알고리즘의 비선형 주요성분분석 신경망을 이용한 영상데이터의 효율적인 특징추출에 대하여 제안한다. 제안된 학습알고리즘에서는 최적해로 수렴하는 과정에서 발생할 수도 있는 진동을 억제하여 빠른 속도의 수렴이 가능하도록 하기 위해 모멘트를 이용하였고, 국소최적해를 만났을 때 이를 벗어난 전역최적해로의 수렴을 위한 새로운 연결가중치의 설정을 위하여 동적터널링을 이용함으로써 빠른 수렴속도로 전역최적해에 수렴되도록 학습시킬 수 있다. 제안된 학습알고리즘을 이용한 신경망을 256$\times$256 픽셀의 간암영상과 128$\times$128 픽셀의 얼굴영상을 대상으로 실험한 결과, 기울기하강의 학습알고리즘을 이용한 기존 비선형 주요성분분석 신경망보다 우수한 수렴성능과 특징추출성능이 있음을 확인 할 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2006.11a
/
pp.35-38
/
2006
다층 퍼셉트론(MLP) 학습 이론인 오류 역전파 알고리즘은 델타룰과 최급 하강법을 사용하기 때문에 학습시 많은 시간이 소요된다는 단점을 가지고 있다. 때문에 신경망에서의 잘못된 초기 가중치 선택은 오류 역전파 알고리즘을 사용하는 신경망에서의 현격한 학습 성능저하를 발생시키게 된다. 본 논문에서는 학습시 오류 역전파 알고리즘의 수렴시간을 개선하기 위한 신경망의 동적 초기 가중치 선택 알고리즘을 제안한다. 이 알고리즘은 학습전 기존의 선택 가중치와 모든 가중치가 1.0 또는 -1.0 값을 가지는 가중치 집합에서 가중치 변동률을 선측정하여 이들 중 가장 변동률이 큰 경우를 초기 가중치 집합으로 선정하게 된다. 즉, 초기의 가중치 변동률을 차후 성능을 판단하는 지표로 사용하여 잘못된 가중치 선택으로 인한 최악의 학습효율의 가능성을 배제시키고 다층 신경망의 학습특성상 평균 이상의 학습효율을 보장하는 초기 가중치 선택방법이다.
Kim, Jin-Ho;Chung, Gun-Hui;Lee, Do-Hun;Lee, Eun-Tae
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.779-783
/
2010
최근 들어 그 심각성을 더하고 있는 이상기후 현상으로 가용 수자원의 변동이 커지고 있으며, 이에 따라 수자원의 효율적인 운영이 요구되고 있다. 그러나 효율적인 운영을 위해서는 미래 유입량의 불확실성의 고려하고, 홍수 조절용량의 확보하면서도, 용수공급을 위한 저수량을 확보하고, 수력 발전을 해야 하는 복잡한 상황을 모두 고려하여야한다. 이러한 복잡한 시스템에서 하나의 최적화 기법으로는 모든 고려사항들을 만족시키는 최적해를 찾는 것은 사실상 불가능에 가깝다. 그러므로 저수지 운영의 최적화를 위한 연구에서 한 가지 이상의 기법을 조합하는 기법을 사용하게 되었다. 이러한 기법은 각 기법의 장점을 취하고 각각의 한계를 극복하기 위해 주로 사용되었다. 본 연구에서는 저수지 운영 최적화를 모의하기 위하여 대청댐에서의 저수위, 유입량, 용수이용량 등을 고려하여 방류량의 예측을 동적 계획법(Dynamic Programming Model)으로부터 동적 신경망(Dynamic Neural Network Model)과 적응 퍼지 제어기법(Adaptive Neuro-Fuzzy Inference System)을 개발하여 실제 방류량과 세 가지 최적화 방법에 의한 결과를 비교 검정하였다. 본 연구의 수행으로 인해 얻어진 결과를 요약하면 다음과 같다. 첫째, 동적 신경망과 적응 퍼지 제어기법에 의한 최적화 모의가 동적 계획법에 비해 시스템의 구축이 쉽고 유연하다. 둘째, 퍼지추론의 Membership 함수의 구축에 따라 단시간에 많은 양의 강우가 발생하는 국지성 강우에 대해서도 최적 방류량을 예측할 수 있다. 셋째, 저수지 운영 과거자료의 부족과 불확실성을 해결하면, 보다 용이하고 양호한 예측결과를 얻을 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.