• 제목/요약/키워드: 동적 모드 분해 기법

검색결과 14건 처리시간 0.018초

POD와 DMD를 이용한 와류형 분사기의 극저온 질소 분무 동적 특성 분석 (Dynamic Characteristics Analysis of the Cryogenic Nitrogen Injection of Swirl Injector using POD and DMD)

  • 강정석;성홍계;손채훈
    • 한국추진공학회지
    • /
    • 제21권5호
    • /
    • pp.1-9
    • /
    • 2017
  • 초임계 환경에서 와류형 분사기의 극저온 질소 분무 동적 특성 분석을 위하여 3차원 LES 난류 모델을 적용하였다. 초임계 상태에서 질소의 상태량들을 정확하게 예측하기 위해 SRK 실기체 상태방정식을 사용하였고, 점성계수와 열전도도는 Chung의 고압 상태 혼합물에 대한 방정식, 그리고 확산 계수는 Fuller의 이론에 Takahashi의 보정식을 적용하였다. 질소 분무 결과, 분사기 내, 외부에서 유동장과 음향장 사이의 상호작용으로 복잡한 유동구조가 형성된다. 복잡한 유동 현상을 분석하기 위해 FFT, POD 그리고 DMD 기법을 적용하여 해석을 수행하였다. FFT 해석을 수행하여 분사기 내, 외부에서 나타나는 특정 주파수를 파악하였으며, POD와 DMD를 통해 각 주파수가 어떠한 유동 구조를 갖는지에 대한 연구를 수행하였다. 또한, DMD를 통해 각 주파수의 감쇠 계수를 파악하여 이를 실험 결과와 비교하였다.

단변분 탐색법에 기초한 고속철도교량의 수치해석 모델 개선 (Numerical Model Updating Based on Univariate Search Method for High Speed Railway Bridges)

  • 박동욱;김남식;김성일
    • 대한토목학회논문집
    • /
    • 제34권1호
    • /
    • pp.17-27
    • /
    • 2014
  • 유한요소 해석 기술의 발달에 따라 수치해석은 실구조물의 상태파악 및 유지관리에 중요한 요소가 되었다. 이러한 유한요소 해석모델을 이용하여 실 구조물의 상태 파악하고 수치 실험을 행하기 위해서는 계측 응답을 바탕으로 수치해석 모델의 개선이 반드시 이루어져야 한다. 본 연구에서는 새롭게 개발된 단변분 탐색법을 기반으로 반복적 개선을 수행하면서도 미분함수를 작성하지 않아도 되는 새로운 수치해석모델 개선기법을 소개하고, 동적안정성 분석을 통하여 고속철도교량에서의 적용성을 검토하였다. 정확한 동특성 분석을 위하여 무선계측시스템과 계측점 이동법을 이용한 세밀한 계측을 실시하고, 상관성 검토 및 모드분해기법을 활용하여 고유진동수와 모드형상을 추정하였다. 설계자료를 바탕으로 구축된 수치해석 초기 모델을 추정된 동특성과 개발된 수치해석 모델 개선 기법을 이용하여 모델 개선을 수행하였으며, 개선된 모델을 이용한 수치 실험 결과와 실 교량에서의 응답과 비교하여 수치해석 모델 개선 기법의 적용성을 검토하였다. 또한, 개선된 모델의 유용성을 검토하기 위하여 고속철도교량의 동적안정성 분석을 실시하여 성공적으로 수행할 수 있었다. 개발된 수치해석 모델 개선기법의 적용성을 추가적으로 검증된다면, 다양한 구조물 및 교량에서 개발된 수치해석 모델 개선기법을 사용할 수 있을 것이다.

영역/시간 세분화 D-TDD OFDM 구조에 기반한 새로운 WMAN 시스템 구조 설계 (Enhanced WMAN System based on Region and Time Partitioning D-TDD OFDM Architecture)

  • 김미란;정희정;김낙명
    • 대한전자공학회논문지TC
    • /
    • 제43권11호
    • /
    • pp.68-77
    • /
    • 2006
  • 미래 무선 멀티미디어 서비스에서 발생하는 비대칭 트래픽을 해결하기 위한 중요한 대안으로 동적 시간 분할 이중화(D-TDD: dynamic time division duplexing) 기법이 대두되고 있다. 그러나 D-TDD 모드 셀룰러 시스템에서는 교차 시간 슬롯(CTS: cross time slot) 구간 내에서 발생하는 기지국 (BS)간 그리고 단말기 (MS)간 간섭은 시스템 성능을 저하시킨다. 이러한 간섭을 완화하기 위하여 본 논문에서는 직교 주파수 분할 다중화 (OFDM) 시스템을 위한 D-TDD모드에서 동작하는 영역/시간 세분화 제어(region and time partitioning) 기법을 제안한다. 즉, CTS 구간에서의 각 타임슬롯을 일정 수의 미니슬롯들로 분할하고 각 셀은 각 타임슬롯의 미니슬롯과 같은 수의 영역들로 분할하여, 각 사용자들은 자신이 위치한 영역에 따라 각각에 대응되는 미니슬롯을 할당받는다. 이와 같은 구조를 통하여 각 셀에서 간섭의 요인이 되는 인접요소들을 배제시키고, 역방향 간섭을 주는 요인들 간의 거리를 최대한 이격시킨다. 또 셀 간 간섭을 최소화하기 위하여, 신호품질을 고려한 시간 자원할당 기법을 제안한다. 모의실험을 통하여, 제안된 기법은 기존의 시간자원할당 기법 대비 outage 확률과 대역폭 효율의 측면에서 보다 우수한 성능을 보임을 확인하였다.

모드분해기법을 이용한 동적 변형률신호로부터 변위응답추정 (Estimation of Displacement Responses from the Measured Dynamic Strain Signals Using Mode Decomposition Technique)

  • 김성완;장성진;김남식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.109-117
    • /
    • 2008
  • In this study, a method predicting the displacement responseof structures from the measured dynamic strain signal is proposed by using a mode decomposition technique. Dynamic loadings including wind and seismic loadings could be exerted to the bridge. In order to examine the bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. Because it may be not easy for the displacement response to be acquired directly on site, an indirect method to predict the displacement response is needed. Thus, as an alternative for predicting the displacement response indirectly, the conversion of the measured strain signal into the displacement response is suggested, while the measured strain signal can be obtained using fiber optic Bragg-grating (FBG) sensors. To overcome such a problem, a mode decomposition technique was used in this study. The measured strain signal is decomposed into each modal component by using the empirical mode decomposition(EMD) as one of mode decomposition techniques. Then, the decomposed strain signals on each modal component are transformed into the modal displacement components. And the corresponding mode shapes can be also estimated by using the proper orthogonal decomposition(POD) from the measured strain signal. Thus, total displacement response could be predicted from combining the modal displacement components.

  • PDF