• Title/Summary/Keyword: 동적 모드 분해

Search Result 22, Processing Time 0.016 seconds

A Study on the Changes of Accommodative Function in Respect to the Viewing Angle (주시각도에 따른 조절기능의 변화)

  • Lee, Hark-Jun;Kim, Jung-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • Purpose: The purpose of this study was to examine the relationship between the accommodative facility, blink rate and accommodative lag according to the change of angles of main viewpoint of near distance worker and study an appropriate viewing angle that mitigates asthenopia, such as headaches or eye fatigue accompanied when reading and staring at the computer or TV for a long time. Methods: Total of 27 people including 12 male university students and 15 female university students in the age of 20 to 36 with frequent near distance works, such as computers, were selected to study the accommodative facility, the blink rate and the accommodative lag in accordance with the change of viewing angles of the near distance workers. The refraction error was corrected completely and the phoropter was shifted to near distance mode to locate the near distance indication at 40 cm. The accommodative facility and the blink rate were measured for one minute at each viewing direction of $40^{\circ}$ downward, $20^{\circ}$ downward, horizontal, and $20^{\circ}$ upward directions based on the horizontal line and the accommodative lag was measured in dynamic retinoscopy using retinoscope. Results: As a result, when the main viewpoint was moved on upper direction from the $40^{\circ}$ below, the accommodative facility was reduced and the blink rate and the accommodative lag were increased so their eyes became dry and the accommodation response was reduced. Conclusions: In near distance works, the eye fatigue level can be minimized by locating a book or a computer screen $40^{\circ}$ below than the horizontal direction.

  • PDF

Measurement System of Dynamic Liquid Motion using a Laser Doppler Vibrometer and Galvanometer Scanner (액체거동의 비접촉 다점측정을 위한 레이저진동계와 갈바노미터스캐너 계측시스템)

  • Kim, Junhee;Shin, Yoon-Soo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.227-234
    • /
    • 2018
  • Researches regarding measurement and control of the dynamic behavior of liquid such as sloshing have been actively on undertaken in various engineering fields. Liquid vibration is being measured in the study of tuned liquid dampers(TLDs), which attenuates wind motion of buildings even in building structures. To overcome the limitations of existing wave height measurement sensors, a method of measuring liquid vibration in a TLD using a laser Doppler vibrometer(LDV) and galvanometer scanner is proposed in this paper: the principle of measuring speed and displacement is discussed; a system of multi-point measurement with a single point of LDV according to the operating principles of the galvanometer scanner is established. 4-point liquid vibration on the TLD is measured, and the time domain data of each point is compared with the conventional video sensing data. It was confirmed that the waveform is transformed into the traveling wave and the standing wave. In addition, the data with measurement delay are cross-correlated to perform singular value decomposition. The natural frequencies and mode shapes are compared using theoretical and video sensing results.