• Title/Summary/Keyword: 동적 경제급전

Search Result 3, Processing Time 0.016 seconds

A Swap Optimization for Dynamic Economic Dispatch Problem with Non-smooth Function (비평활 발전비용함수를 가진 동적 경제급전문제의 교환 최적화)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.189-196
    • /
    • 2012
  • This paper proposes Swap algorithm for solving Dynamic Economic Dispatch (DED) problem. The proposed algorithm initially balances total load demand $P_d$ with total generation ${\Sigma}P_i$ by deactivating a generator with the highest unit generation cost $C_i^{max}/P_i^{max}$. It then swaps generation level $P_i=P_i{\pm}{\Delta}$, (${\Delta}$=1.0, 0.1, 0.01, 0.001) for $P_i=P_i-{\Delta}$, $P_j=P_j+{\Delta}$ provided that $_{max}[F(P_i)-F(P_i-{\Delta})]$ > $_{min}[F(P_j+{\Delta})-F(P_j)]$, $i{\neq}j$. This new algorithm is applied and tested to the experimental data of Dynamic Economic Dispatch problem, demonstrating a considerable reduction in the prevalent heuristic algorithm's optimal generation cost and in the maximization of economic profit.

Development of Pareto-Optimal Technique for Generation Planning According to Environmental Characteristics in term (환경특성을 반영한 급전계획의 파레토 최적화기법 개발)

  • Lee, Buhm;Kim, Yong-ha;Choi, Sang-kyu
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2004
  • This paper presents a new methodology to get pareto-optimal solution for generation planning. First, we apply dynamic programming, and we can get an optimal economic dispatch considering total quantity of contamination for the specified term. Second, we developed a method which can get pareto-optimal solution. This solution is consisted of a set of optimal generation planning. As a result, decision maker can get pareto-optimal solutions, and can choose a solution. We applied this method to the test system, and showed the usefulness.

Dynamic Economic Load Dispatch Problem Applying Valve-Point Balance and Swap Optimization Method (밸브지점 균형과 교환 최적화 방법을 적용한 동적경제급전문제)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.253-262
    • /
    • 2016
  • This paper proposes a balance-swap method for the dynamic economic load dispatch problem. Based on the premise that all generators shall be operated at valve-points, the proposed algorithm initially sets the maximum generation power at $P_i{\leftarrow}P_i^{max}$. As for generator i with $_{max}c_i$, which is the maximum operating cost $c_i=\frac{F(P_i)-F(P_{iv_k})}{(P_i-P_{iv_k})}$ produced when the generation power of each generator is reduced to the valve-point $v_k$, the algorithm reduces i's generation power down to $P_{iv_k}$, the valve-point operating cost. When ${\Sigma}P_i-P_d$ > 0, it reduces the generation power of a generator with $_{max}c_i$ of $c_i=F(P_i)-F(P_i-1)$ to $P_i{\leftarrow}P_i-1$ so as to restore the equilibrium ${\Sigma}P_i=P_d$. The algorithm subsequently optimizes by employing an adult-step method in which power in the range of $_{min}\{_{max}(P_i-P_i^{min}),\;_{max}(P_i^{max}-P_i)\}$>${\alpha}{\geq}10$ is reduced by 10; a baby step method in which power in the range of 10>${\alpha}{\geq}1$ is reduced by 1; and a swap method for $_{max}[F(P_i)-F(P_i-{\alpha})]$>$_{min}[F(P_j+{\alpha})-F(P_j)]$, $i{\neq}j$ of $P_i=P_i{\pm}{\alpha}$, in which power is swapped to $P_i=P_i-{\alpha}$, $P_j=P_j+{\alpha}$. It finally executes minute swap process for ${\alpha}=\text{0.1, 0.01, 0.001, 0.0001}$. When applied to various experimental cases of the dynamic economic load dispatch problems, the proposed algorithm has proved to maximize economic benefits by significantly reducing the optimal operating cost of the extant Heuristic algorithm.