• Title/Summary/Keyword: 동적조건

Search Result 1,415, Processing Time 0.031 seconds

An Improvement of the Schedulability Condition in Dynamic Priority Ceiling Protocol (동적 우선순위 상한 프로토콜의 스케줄링 가능성 조건 개선)

  • O, Seong-Heun;Yang, Seung-Min
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.11
    • /
    • pp.573-580
    • /
    • 2001
  • When tasks access shared resources in real-time systems, the unbounded priority inversion may occur. In such cases it is impossible to guarantee the schedulability of real-time tasks. Several resource access protocols have been proposed to bound the duration of priority inversion and sufficient conditions are given to guarantee the schedulability of periodic task set. In this paper, we show an improved sufficient condition for schedulability when the dynamic priority ceiling protocol is used. Our approach exploits the fact that a lower priority task can continue to execute as far as the higher priority tasks do not miss their deadlines. This permitting execution time of the higher priority tasks for a lower priority task can be excluded from the worst-case blocking time of the higher priority tasks. Since the worst-case blocking time of tasks can be reduced, the sufficient condition for schedulability of dynamic priority ceiling protocol becomes further tight.

  • PDF

Methodology of Resilient Dynamic Path Management in GMPLS Network under Multiple Link Failures (GMPLS 네트워크에서 다중 경로 장애 발생시 Resilience를 만족하는 동적 경로 관리 방법)

  • Park Jong-Tae;Lee Wee-Hyuk;Kwon Jung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5B
    • /
    • pp.397-404
    • /
    • 2006
  • As an increase in recent optical network-based IP services, GMPLS management framework becomes more important than ever before. In this paper, we propose the dynamic GMPLS path management algorithm, which can satisfy the users with their traffic engineering recovery requirements and find out the best backup service path under multiple link failures. To be more specific, we are deriving the soluble conditions of a backup path which is satisfied in a GMPLS network. In addition, through proposing the fast backup path selection algorithm, we can sufficiently satisfy a user's recovery requirement and minimally protect the suspension of the service against a link failure.

Simulation of Vehicle-Structure Dynamic Interaction by Displacement Constraint Equations and Stabilized Penalty Method (변위제한조건식과 안정화된 Penalty방법에 의한 차량 주행에 따른 구조물의 동적상호작용 해석기법)

  • Chung, Keun Young;Lee, Sung Uk;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.671-678
    • /
    • 2006
  • In this study, to describe vehicle-structure dynamic interaction phenomena with 1/4 vehicle model, nonlinear Hertzian contact spring and nonlinear contact damper are adopted. The external loads acting on 1/4 vehicle model are selfweight of vehicle and geometry information of running surface. The constraint equation on contact surface is implemented by the Penalty method with stabilization and the reaction from constraint violation. To describe pitching motion of various vehicles two types of the displacement constraint equations are exerted to connect between car bodies and between bogie frames, i.e., the rigid body connection and the rigid body connection with pin, respectively. For the time integration of dynamic equations of vehicles and structure Newmark time integration scheme is adopted. To reduce the error caused by inadequate time step size, adaptive time-stepping technique is also adopted. Thus, it is expected that more versatile dynamic interaction phenomena can be described by this approach and it can be applied to various railway dynamic problems with low computational cost.

Effect of Dynamic Electric Fields on Dielectric Reliability in Cu Damascene Interconnects (동적인 전기장이 다마신 구리 배선에서의 절연파괴에 미치는 영향)

  • Yeon, Han-Wool;Song, Jun-Young;Lim, Seung-Min;Bae, Jang-Yong;Hwang, Yuchul;Joo, Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.111-115
    • /
    • 2014
  • Effect of dynamic electric fields on dielectric breakdown behavior in Cu damascene interconnects was investigated. Among the DC, unipolar, and bipolar pulse conditions, the longest dielectric lifetime is observed under the bipolar condition because backward Cu ion drift occurs when the direction of electric field is changed by 180 degrees and Cu contamination is prohibited as a results. Under the unipolar pulse condition, the dielectric lifetime increases as pulse frequency increases and it exceed the lifetime under DC condition. It suggests that the intrinsic breakdown of dielectrics significantly affect the dielectric breakdown in addition to Cu contamination. As the unipolar pulse width decreases, dielectric bond breakdown is more difficult to occur.

An Adaptive PD Control Method for Mobile Robots Using Gradient Descent Learning (경사감소학습을 이용한 이동로봇의 적응 PD 제어 방법)

  • Choi, Young-Kiu;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1679-1687
    • /
    • 2016
  • Mobile robots are effectively used in industrial fields that require flexible manufacturing systems. Mobile robots have to move with mechanical loads such as product parts along the specified paths, and are usually equipped with kinematic controllers. When the loads and nonlinear frictions are too high, satisfactory control performances can not be expected with the kinematic controllers, so some dynamic controllers have been developed. Conventional dynamic controllers require the exact weights and locations of the loads; however, the loads are frequently changed and unknown so that the control performances of the conventional controllers are limited. This paper proposes an adaptive PD control method using gradient descent learning to have sufficient dynamic control performance for unknown loads. Simulation studies have been conducted for various load conditions to verify that the adaptive PD control method have much broader convergence region than the convention method.

Analysis of Moving Vehicle Load Distribution of Curved Steel Box Girder Bridges considering Various Support Conditions (곡선교의 받침특성에 따른 주행차량하중분배 특성분석)

  • Kim, Sang Hyo;Lee, Yong Seon;Cho, Kwang Yil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.711-720
    • /
    • 2002
  • A 3-D numerical model, which could demonstrate the static and dynamic responses of a curved bridge more precisely with the moving vehicles, was developed The dynamic response induced by the centrifugal rolling motion of vehicle was identified according to the variations of the partial grade and the curvature of the slab. Dynamic characteristics of the curved bridge with the moving vehicle were analyzed under the condition of support types and two different support systems. Parametric studies were conducted to compare the efficiency of load distribution in the curved bridge. In general, while the vehicle was crossing the curved bridge, negative reaction occurred in the inside of the girder. The final result showed that the support system located outside the girder was more advantageous than other systems, and the characteristics of load distributions differed from the others in the various conditions of support systems.

Dynamic Behaviors of a Corrugated Steel Tunnel Lining System due to Wind Loads by Passing Vehicles according to the Boundary Conditions (구조물 경계조건에 따른 파형강판 터널라이닝의 풍하중에 대한 동적 거동분석)

  • Mha, Ho-Seong;Cho, Kwang-Il;Yoo, Sung-Heum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.47-58
    • /
    • 2012
  • Dynamic behaviors of a corrugated steel plate tunnel lining system are examined under wind loads due to passing vehicles. Applied wind loads are simulated by applying the time functions as a vehicle moves through the tunnel. Wind loads are described by the pressure and suction as a vehicle arrives and leaves target positions in the tunnel. The tunnel lining is modeled using the simplified shell elements that retain the characteristics of the corrugated shapes. The displacements of the tunnel lining are evaluated under various conditions regarding wind velocity and the passing vehicles. The responses are found to increase as the vehicle velocity and wind velocity increase. A maximum displacement of 25mm occurs when two vehicles are crossing at the speed of 120km/h. A row of vehicles running consecutively minimally affects the dynamic responses with less than 2.5% of the dynamic responses enlarged and attributed to one running vehicle. It should be noted that the dynamic responses of the tunnel lining should be considered when there is no shotcrete applied.

Study on the dynamic deformation characteristics of pulse shapers for controlling the shape of impact waves (충격파형 제어를 위한 펄스쉐이퍼의 동적 변형 특성에 관한 연구)

  • Yang, Jeong-Hun;Jo, Sang-Ho;Kim, Won-Beom;Kim, Seung-Gon;Song, Yeong-Su;Seong, Nak-Hun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.198-202
    • /
    • 2009
  • Split Hopkinson pressure bar(SHPB) is used to obtain compressive stress-strain data and deformation characteristics of brittle materials such as rock and concrete. SHPB demands both dynamic stress equilibrium condition and nearly constant strain rate before the failure of the specimen. Pulse shape technique, which places a thin metal disk between launched impact bar and incident bar, should be adopted to satisfy both conditions. In this study, metallic disks with various shapes were used to control the incident impact wave. The results show that the peak value of stress and the length of waves increased with decreasing thickness and diameter of the pulse shaper. In order to investigate shape and strain rate-dependency of the pulse shapers, dynamic compressive stress-strain curves were obtained and analyzed.

  • PDF

Development of Optimal Design Simulation Model for Least Cost Urban Sewer System Considering Risk (I) (위험도를 고려한 최소비용 도시우수관망 설계의 최적화 모형개발 (I): 모형의 개발과 시험유역의 적용)

  • Jang, Suk-Hwan;Park, Sang-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1021-1028
    • /
    • 2005
  • This study purpose to develop simulation model of optimal design condition of urban storm sewer system considering risk. Urban Storm Sewer Optimal Design Model(USSOD) can compute pipe capacity, pipe slope, crown elevation, excavation depth, risk and return cost in the condition of design discharge. Rational formula is adopted for design discharge and Manning's formula is used for pipe capacity. Discrete differential dynamic programming(DDDP) technique which is a kind of dynamic programming(DP) is used for optimization and first order second moment approximation method and uncertainty analysis is also for developing model. USSOD is applied to hypothetical drainage basin to test and verify, which resulted economical and efficient design in urban drainage sewer system.

2D Numerical Simulation of a Dynamic Centrifuge Test for a Pile-Supported Structure (2차원 수치해석을 이용한 말뚝 지지구조물의 동적 원심모형실험 거동 모사)

  • Chanh, Pham Viet;Tran, Nghiem Xuan;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.8
    • /
    • pp.15-26
    • /
    • 2018
  • Recently, as the seismic performance based design methods have been introduced, dynamic numerical analyses need to be performed to evaluate the actual performance of structures under earthquakes. The verification of the numerical modeling is the most important for the performance based design. Therefore, 2-dimensional numerical analyses were performed to simulate the seismic behavior of a pile-supported structure, to provide the proper numerical modeling and to determine of input parameters. A dynamic centrifuge test of a pile group in dry loose sand was simulated to verify the applicability of the numerical model. The numerical modeling was carefully made to reflect the actual condition of the centrifuge test including dynamic soil properties, soil-pile interaction, boundary condition, the modeling of the group pile and structure and so on. The predicted behavior of the numerical analyses successfully simulated the acceleration variation in ground, the moment and displacement of the pile, and the displacement and acceleration of the structure. Therefore, the adopted numerical modeling and the input parameters can be used to evaluate the seismic performance of pile groups.