본 논문에서는 다양한 영상에서 객체들의 정보 손실을 최소화한 상태에서 영상을 이진화하기 위해 ${\alpha}-cut$을 동적으로 설정하는 개선된 퍼지 이진화 방법을 제안한다. 제안된 퍼지 이진화 방법은 평균 밝기 값을 기준으로 가장 어두운 픽셀 값과 가장 밝은 픽셀 값의 거리를 계산하여 소속 함수의 구간을 설정한다. 그리고 소속 함수에서 소속도를 구한 후, 영상을 이진화 하기 위해 최대 밝기 값에서 중간 밝기 값을 나눈 값을 ${\alpha}-cut$값으로 설정한 후에 구간 임계치를 이용하여 영상을 이진화 한다. 제안된 퍼지 이진화 방법의 효율성을 확인하기 위해 다양한 영상을 대상으로 실험한 결과, 기존의 퍼지 이진화 방법보다 객체와 배경 사이의 명암도가 한쪽에 치우친 분포를 가진 영상과 넓게 분포된 영상에서 모두 객체들의 정보의 손실이 적은 상태에서 이진화되는 것을 확인할 수 있었다.
대부분 이진화 알고리즘은 임계치를 결정하기 위해 히스토그램을 사용하여 밝기 분포를 분석한다. 배경과 물체의 명암 차이가 큰 경우는 분할을 위해 양봉 히스토그램으로 표현하여 최적의 임계치를 찾기 위해 히스토그램 골짜기를 선택하는 것으로도 양호한 임계치를 찾을 수 있지만 배경과 물체의 밝기 차이가 크지 않거나 밝기 분포가 양봉 특성을 보이지 않을 때는 히스토그램 분석만으로 적절한 임계치를 얻기 어렵다. 이 문제점을 개선하기 위해 삼각형 타입의 소속 함수를 적용하여 임계치를 동적으로 설정하고 영상을 이진화 하는 퍼지 이진화 방법이 제안되었다. 퍼지 이진화 방법은 소속 함수에 적용된 소속도를 a-cut에 적용하여 영상을 이진화 한다. 그러나 기존의 퍼지 이진화 방법은 a-cut값을 경험적으로 설정하기 때문에 다양한 영상을 이진화하는 과정에서 정보 손실이 많이 발생하는 문제점이 있다. 따라서 본 논문에서는 FCM 클러스터링 알고리즘을 이용하여 퍼지 이진화 방법의 a-cut값을 동적으로 설정하여 이진화하는 방법을 제안한다. 제안된 방법을 다양한 영상에 적용한 결과, 배경과 물체의 명암도 차이가 크게 나지 않는 영상의 경우에는 기존의 퍼지 이진화 방법보다 정보 손실이 적은 상태로 이진화되는 것을 확인하였다.
자동화 지문인식을 위한 과정에서 지문영상의 정보를 보존하면서 최적의 세선화와 특이점추출을 위한 중요한 부분은 이진화 과정이다. 이진화 과정은 그레이-스케일 레벨의 영상을 0과 255값으로 바꾸는 과정이다. 이 과정에서 적절한 기준레벨값(Threshold Value)을 설정해 주지 않으면 지문영상의 정보가 손실된다. 본 논문에서는 이진화 과정 부분에 인공지능 기법을 적용하여 입력되는 지문영상에서 실시간으로 기준레벨(Threshold)을 추출하는 방법을 제안한다. 실험결과 기존의 방법과 비교하여 좋은 성능을 보여주고 있음을 나타낸다
대부분의 이진화 알고리즘은 임계치를 결정하기 위하여 히스토그램을 사용하여 밝기분포를 분석한다. 배경과 물체의 명도차이가 큰 경우에는 분할을 위해 양봉(bimodal) 히스토그램으로 표현하여 최적의 임계치를 찾기 위해 히스토그램 골짜기(valley)를 선택하는 것만으로도 양호한 임계치 결과를 얻을수 있으나, 배경과 물체의 밝기 차이가 크지 않거나 밝기 분포가 양봉 특성을 보이지 않을 때는 히스토그램 분석만으로 적절한 임계치를 얻기 어렵다. 그리고 한 영상에서는 넓은 영역에 걸쳐 명암도 변화가 일어나고 다양한 유형의 물체가 포함되어 있으므로 스케치 특징점 유무를 판별하는 임계치의 결정에는 애매 모호함이 존재한다. 따라서 본 논문에서는 영상에 대해 삼각형 타입의 소속함수를 적용하여 임계치를 동적으로 설정하고 영상을 이진화하는 방법을 제안한다. 제안된 퍼지 이진화 방법은 평균 밝기 값을 기준으로 가장 어두운 픽셀 값과 가장 밝은 픽셀값의 거리를 계산하여 밝기의 조정률을 구하여 최소 밝기값과 최대 밝기 값을 설정하고 삼각형의 소속 함수에 적용한다. 소속 함수에 적용된 소속도를 a-cut 을 적용하여 영상을 이진화한다. 다양한 영상에 적용한 결과, 기존의 이진화 방법보다 제안된 퍼지 이진화 방법이 효율적인 것을 알 수 있었다.
영상 이진화 알고리즘의 효율성은 이진화를 위한 임계치 결정에 있어서의 불확실성의 합리적인 제거와 이진화로 인한 영상 정보의 손실을 최소화하는 데에 있다. 그러한 모호성의 처리 방법으로서 퍼지 이진화 방법이 많이 사용되는데 보통 사용되는 삼각형 타입의 소속 함수와 이진화 임계치를 결정하는 ${\alpha}$_cut 값의 설정 방법이 그 효율성에 영향을 미친다. 다만 기존의 정적인 퍼지 이진화 방법은 명암 대비가 낮은 영상의 경우 그 효율성이 떨어지는 것이 알려져 있다. 본 논문에서 퍼지 이진화 방법의 이러한 문제점을 개선하기 위하여 ${\alpha}$_cut의 동적 결정 방법과 사다리꼴 타입의 소속 함수와 구간 설정 방법을 제안한다. 이 방법은 스트레칭 기법과 같은 정규화 전처리 과정을 밟지 않기 때문에 영상의 정보 손실이 적다. 또한 ${\alpha}$_cut의 동적 결정으로 인해 다양한 영상을 동일 기법으로 보다 정확하게 처리할 수 있다. 야경 영상, 척추 측만증 및 지방종 영상 등 다양한 물채를 포함하고 명암 대비성이 낮은 편인 영상을 대상으로 한 실험에서 제안된 방법이 기존의 퍼지 이진화 방법보다 효과적임이 확인되었다.
동적 메모리 할당 방식은 사전에 그 메모리의 크기를 결정할 수 없는 경우에 효과적인 프로그래밍 기술이다. 하지만 메모리 조각화 문제와 최악의 경우 실행 시간을 예측할 수 없는 단점 때문에 실시간 시스템에는 거의 적용되지 않고 있다. 본 연구에서는 리눅스 기반의 실시간 시스템을 위한 동적 메모리 할당 알고리즘인 QB(Ouick-Buddy)를 제안한다 제안된 알고리즘은 작은 크기의 메모리 요구에 대해서 워드 크기별로 프리 리스트를 관리하고, 큰 크기의 메모리 요구에 대해서는 이진 버디 시스템을 이용하여 관리한다. 이 알고리즘에서는 작은 크기의 메모리 요구에 대해 완전-적합(exist-fit) 전략을 사용하여 메모리 이용 효율을 증가시킨다. 또한 큰 크기의 메모리 요구에 대해서 버디 시스템을 적용함으로써 외부 조각화를 제거시키고 처리량(throughput)을 증가시킨다. 제안된 알고리즘의 성능을 확인하기 위해서 제안된 알고리즘과 이진 버디 시스템(binary buddy system), 빠른-적합(quick-fit)의 메모리 이용 효율성 및 메모리 조각화 율을 비교할 것이다.
대부문의 이진화 알고리즘은 임계치를 결정하기 위하여 히스토그램을 사용하여 밝기분포를 분석한다. 배경과 물체의 명도차이가 큰 경우에는 분할을 위해 양봉(bimadal) 히스토그램으로 표현하여 최적의 임계치를 찾기 위해 히스토그램 골짜기(valley)를 선택하는 것만으로도 양호한 임계치 결과를 얻을 수 있다. 하지만 배경과 물체의 밝기 차이가 크지 않거나 밝기 분포가 양봉 특성이 보이지 않을 때는 히스토그램 분석만으로 적절한 임계치를 얻기 어렵다. 그리고 한 영상에서는 넓은 영역에 걸쳐 명암도 변화가 일어나고 다양한 유형의 물체가 있을 때 스케치 특징점의 유무를 판별하는 임계치의 결정에는 애매모호함이 존재한다. 따라서, 본 논문에서는 영상에 대한 삼각형 타입의 소속함수를 적용하여 임계치를 동적으로 설정하고 영상을 이진화하는 알고리즘을 제안한다. 제안된 퍼지 이진화 알고리즘은 원 영상을 특정 크기의 윈도우로 나누어서 윈도우의 소속 함수에 대한 소속도를 구하여 영상을 이진화한다. 다양한 영상에 적용한 결과, 기존의 이진화 기법보다 제안된 퍼지 이진화 알고리즘이 효율적인 것을 알 수 있었다.
이동 물체의 이동 거리 추적이나 대상 물체의 인식과 판별 물체의 특징 추출과 같은 응용분야에서 컴퓨터(Computer)와 비젼시스템(vision system)을 이용한 영상 데이터 처리 분야에 대한 이용률이 증가하면서, 그에 따른 연구가 활발히 진행되고 있다. 따라서 CCD 카메라(Charge-Couple Device Camera)로부터 입력된 그레이 레벨(Gray Level)의 영상을 입력받아 처리과정을 거쳐 위치정보를 전송하는 과정에서 정확한 정보를 얻기 위한 전처리 과정 방법을 제안하고, 실제 시스템에 적용한 결과를 제시한다. 여기서 영상의 전처리 과정 중 입력 영상에서 불필요한 부분을 제거하거나, 배경과 대상물의 분리, 내포된 잡음을 없애기 위하여 흔히 이진화 방법을 많이 사용한다 특히 이진화 과정에서 그레이 레벨의 입력영상에서 히스토그램(histogram) 정보를 이용하여 영상의 이진화시의 임계값을 찾는 것은 아주 중요한 요인이다 따라서 본 논문에서는 신경회로망을 이용하여 실시간으로 CCD 카메라를 통하여 입력되는 그레이 레벨의 입력 영상에 대하여 동적으로 적당한 임계값을 .찾는 방법을 제안하고자한다. 또한 제안한 신경회로망을 이용한 임계값 추출 알고리즘(algorithms)을 구현한 시스템(system)에 적용하여 일반적인 방법과 비교 검토하고 응용 가능성을 확인한다.
머신비전을 이용한 IC 패키지 마킹검사 시스템은 입력영상으로부터 검사할 요소들의 위치를 식별하고, 추출된 요소들을 학습된 표준 패턴과 비교하여 마킹의 불량 여부를 판단한다. 본 논문에서는 검사 대상 IC 패키지의 위치 판별, 마킹문자 추출, 핀원딤플 검출과 같은 일련의 작업들에 적합한 적응적 다단계 이진화 방법과 마킹문자의 국소적인 오류검출은 물론 잡영에 강건한 정합단위의 동적 선택 방법을 제안한다. 제안하는 이진화 방법은 이진화 대상 영역과 명도 값의 범위를 제한하여 Otsu의 이진화 알고리즘을 적용함으로써 특정 응용에 적응적인 이진화가 가능하다. 정합단위의 동적 선택 방법은 문자추출 및 배치분석에 대한 결과에 따라 정합단위를 선택한다. 그러므로 문자추출 및 배치분석 과정에서 발생하는 예기치 못한 부적절한 상황에서도 가능한 범위내에서 최소의 정합단위를 선택할 수 있다. 제안된 방법을 구현하여 8종의 IC 패키지, 총 280개의 영상에 대하여 실험한 결과, IC 패키지와 핀원딤플의 검출율은 100%였으며, 마킹상태에 대한 판정은 98.8%의 정확도를 나타내어 제안된 방법이 효과적임을 확인할 수 있었다.
영상 이진화 기술은 객체와 배경을 분할하는 과정으로 영상 분석 및 인식 분야에 널리 적용되고 있다. 기존의 이진화 방법은 임계치를 설정하는 과정에서 객체와 배경의 명암 차이가 크지 않을 경우에 불확실성이 존재한다. 이러한 문제점을 개선한 퍼지 이진화는 객체의 특징을 효과적으로 이진화 하지만 ${\alpha}$-cut값을 정적으로 설정하기 때문에 객체의 특징들이 손실된 상태로 이진화 되는 문제점이 있다. 따라서 본 논문에서는 평균, 반복, Otsu 이진화 방법들의 임계치를 이용한 퍼지 소속 함수를 구하여 ${\alpha}$-cut값을 동적으로 설정하는 방법을 제안한다. 다양한 영상을 대상으로 실험한 결과, 제안된 방법은 기존의 이진화 방법 및 퍼지 이진화 방법보다 배경과 객체들의 손실이 적은 상태로 이진화된 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.