• Title/Summary/Keyword: 동적압축피로실험

Search Result 5, Processing Time 0.019 seconds

Electrical Resistance Measurement in Characterizing the Internal Damage of Carbon Nanotube/Polypropylene Nanocomposites (전기저항 측정법을 이용한 탄소나노튜브/폴리프로필렌 나노복합재료의 내부 손상 예측)

  • Kim, Hak-Soo;Kwon, Dong-Jun;Wang, Zuo-Jia;Gu, Ga-Young;Kim, Dae-Sik;Lee, Chun-Soo;Park, Joung-Man
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.201-206
    • /
    • 2013
  • The electrical resistance measurement was investigated as a damage monitoring method. In this study, 0.5 wt% Carbon nanotube reinforced polypropylene (CNT/PP) composites were evaluated under compressive fatigue loading. The shape of specimens was $20^{\circ}$ curved round type. Compression strength and electrical resistance were measured at different sections of specimen during compression. The microcracks of CNT/PP composites were detected based on the changing ratio of electrical resistance. Micro-damage during compressive fatigue test could be detected by electrical resistance measurements. The reason is that the contact points of CNTs in composites decreased under fatigue loading. During compressive fatigue test, larger change of electrical resistance was detected at the microcrack sections. It was proved that microcracks could be detected by electrical resistance measurement under compression test, whereas the real delamination parts were consistent with the predicted results by electrical resistance measurement.

Mechanical Properties of a Lining System under Cyclic Loading Conditions in Underground Lined Rock Cavern for Compressed Air Energy Storage (복공식 지하 압축공기에너지 저장공동의 내압구조에 대한 반복하중의 역학적 영향평가)

  • Cheon, Dae-Sung;Park, Chan;Jung, Yong-Bok;Park, Chul-Whan;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • In a material, micro-cracks can be progressively occurred, propagated and finally lead to failure when it is subjected to cyclic or periodic loading less than its ultimate strength. This phenomenon, fatigue, is usually considered in a metal, alloy and structures under repeated loading conditions. In underground structures, a static creep behavior rather than a dynamic fatigue behavior is mostly considered. However, when compressed air is stored in a rock cavern, an inner pressure is periodically changed due to repeated in- and-out process of compressed air. Therefore mechanical properties of surrounding rock mass and an inner lining system under cyclic loading/unloading conditions should be investigated. In this study, considering an underground lined rock cavern for compressed air energy storage (CAES), the mechanical properties of a lining system, that is, concrete lining and plug under periodic loading/unloading conditions were characterized through cyclic bending tests and shear tests. From these tests, the stability of the plug was evaluated and the S-N line of the concrete lining was obtained.

Comparison of fatigue fracture strength by fixture diameter of mini implants (미니 임플란트 직경에 따른 피로파절강도의 비교 연구)

  • Heo, Yu-Ri;Son, Mee-Kyoung;Kim, Hee-Jung;Choe, Han-Cheol;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.156-161
    • /
    • 2012
  • Purpose: This study was conducted to obtain difference in fracture strength according to the diameter of one-body O-ring-type of mini implant fixture, to determine the resistance of mini implant to masticatory pressure, and to examine whether overdenture using O-ring type mini implant is clinically usable to maxillary and mandibular edentulous patients. Materials and methods: For this study, 13 mm long one body O-ring-type mini implants of different diameters (2.0 mm, 2.5 mm and 3.0 mm) (Dentis, Daegu, Korea) were prepared, 5 for each diameter. The sample was placed at $30^{\circ}$ from the horizontal surface on the universal testing machine, and off-axis loading was applied until permanent deformation occurred and the load was taken as maximum compressive strength. The mean value of the 5 samples was calculated, and the compressive strength of implant fixture was compared according to diameter. In addition, we prepared 3 samples for each diameter, and applied loading equal to 80%, 60% and 40% of the compressive strength until fracture occurred. Then, we measured the cycle number on fracture and analyzed fatigue fracture for each diameter. Additionally, we measured the cycle number on fracture that occurred when a load of 43 N, which is the average masticatory force of complete denture, was applied. The difference on compressive strength between each group was tested statistically using one-way ANOVA test. Results: Compressive strength according to the diameter of mini implant was $101.5{\pm}14.6N$, $149{\pm}6.1N$ and $276.0{\pm}13.4N$, respectively, for diameters 2.0 mm, 2.5 mm and 3.0 mm. In the results of fatigue fracture test at 43 N, fracture did not occur until $2{\times}10^6$ cycles at diameter 2.0 mm, and until $5{\times}10^6$ cycles at 2.5 mm and 3.0 mm. Conclusion: Compressive strength increased significantly with increasing diameter of mini implant. In the results of fatigue fracture test conducted under the average masticatory force of complete denture, fracture did not occur at any of the three diameters. All of the three diameters are usable for supporting overdenture in maxillary and mandibular edentulous patients, but considering that the highest masticatory force of complete denture is 157 N, caution should be used in case diameter 2.0 mm or 2.5 mm is used.

Effect of Implant Types and Bone Resorption on the Fatigue Life and Fracture Characteristics of Dental Implants (임플란트 형태와 골흡수가 임플란트 피로 수명 및 파절 특성에 미치는 효과에 관한 연구)

  • Won, Ho-Yeon;Choi, Yu-Sung;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.121-143
    • /
    • 2010
  • To investigate the effect of implant types and bone resorption on the fracture characteristics. 4 types of Osstem$^{(R)}$Implant were chosen and classified into external parallel, internal parallel, external taper, internal taper groups. Finite elements analysis was conducted with ANSYS Multi Physics software. Fatigue fracture test was performed by connecting the mold to the dynamic load fatigue testing machine with maximum load of 600N and minimum load of 60N. The entire fatigue test was performed with frequency of 14Hz and fractured specimens were observed with Hitachi S-3000 H scanning electron microscope. The results were as follows: 1. In the fatigue test of 2 mm exposed implants group, Tapered type and external connected type had higher fatigue life. 2. In the fatigue test of 4 mm exposed implants group, Parallel type and external connected types had higher fatigue life. 3. The fracture patterns of all 4 mm exposed implant system appeared transversely near the dead space of the fixture. With a exposing level of 2 mm, all internally connected implant systems were fractured transversely at the platform of fixture facing the abutment. but externally connected ones were fractured at the fillet of abutment body and hexa of fixture or near the dead space of the fixture. 4. Many fatigue striations were observed near the crack initiation and propagation sites. The cleavage with facet or dimple fractures appeared at the final fracture sites. 5. Effective stress of buccal site with compressive stress is higher than that of lingual site with tensile stress, and effective stress acting on the fixture is higher than that of the abutment screw. Also, maximum effective stress acting on the parallel type fixtures is higher. It is careful to use the internal type implant system in posterior area.

Fatigue fracture of different dental implant system under cyclic loading (반복하중에 따른 수종 임플란트의 피로파절에 관한 연구)

  • Park, Won-Ju;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.424-434
    • /
    • 2009
  • Statement of problem: Problems such as loosening and fractures of retained screws and fracture of implant fixture have been frequently reported in implant prosthesis. Purpose: Implant has weak mechanical properties against lateral loading compared to vertical occlusal loading, and therefore, stress analysis of implant fixture depending on its material and geometric features is needed. Material and methods: Total 28 of external hexed implants were divided into 7 of 4 groups; Group A (3i, FULL $OSSEOTITE^{(R)}$Implant), Group B (Nobelbiocare, $Br{\aa}nemark$ $System^{(R)}$Mk III Groovy RP), Group C (Neobiotec, $SinusQuick^{TM}$ EB), Group D (Osstem, US-II). The type III gold alloy prostheses were fabricated using adequate UCLA gold abutments. Fixture, abutment screw, and abutment were connected and cross-sectioned vertically. Hardness test was conducted using MXT-$\alpha$. For fatigue fracture test, with MTS 810, the specimens were loaded to the extent of 60-600 N until fracture occurred. The fracture pattern of abutment screw and fixture was observed under scanning electron microscope. A comparative study of stress distribution and fracture area of abutment screw and fixture was carried out through finite element analysis Results: 1. In Vicker's hardness test of abutment screw, the highest value was measured in group A and lowest value was measured in group D. 2. In all implant groups, implant fixture fractures occurred mainly at the 3-4th fixture thread valley where tensile stress was concentrated. When the fatigue life was compared, significant difference was found between the group A, B, C and D (P<.05). 3. The fracture patterns of group B and group D showed complex failure type, a fracture behavior including transverse and longitudinal failure patterns in both fixture and abutment screw. In Group A and C, however, the transverse failure of fixture was only observed. 4. The finite element analysis infers that a fatigue crack started at the fixture surface. Conclusion: The maximum tensile stress was found in the implant fixture at the level of cortical bone. The fatigue fracture occurred when the dead space of implant fixture coincides with jig surface where the maximum tensile stress was generated. To increase implant durability, prevention of surrounding bone resorption is important. However, if the bone resorption progresses to the level of dead space, the frequency of implant fracture would increase. Thus, proper management is needed.