• Title/Summary/Keyword: 동적안정

Search Result 1,175, Processing Time 0.03 seconds

Analysis on Differences in Dynamic Stability of Lower Extremity Caused by Unbalance of Hamstring/Quadriceps Ratio During Drop-landing (드롭랜딩 시 Hamstring/Quadriceps ratio 불균형에 따른 하지의 동적 안정성 차이 분석)

  • Hong, Wan-Ki;Kim, Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.49-56
    • /
    • 2015
  • Objectives : The purpose of this study was to present quantitative data and basic references to decrease the accident risk of soccer instructors. Methods : To obtain data, we conducted an investigation on how H/Q ratio affects the dynamic stability of the lower extremity at the time of drop landing. The study targeted 13 soccer players from C University who have not had any injuries or wounds in the lower extremity joints and in any other parts of their bodies over the last 6 months. By using CMIS (USA), the players were divided into two groups according to H/Q ratios higher and lower than 69%, respectively. The subjects in each group were instructed to perform a drop landing. Results : The H/Q ratio did not affect the maximal flexion angle of the knee joints at the time of drop landing. In addition the dominant group with a relatively high H/Q ratio was observed to have increased time to reduce shock and to efficiently absorb the ground reaction force during drop landing. Also, the dominant group with a relatively high H/Q ratio utilized the strong performances of the antagonistic muscles around the hamstrings and the controlled rotatory powers of the thighs that were applied to the tibias supported by the ground. Finally, H/Q ratio, load factors, and mean and maximum EMG were significantly negatively related, whereas GRFx showed a positive relationship. In fact, these factors all affected the impact of the load from the H/Q ratio to the knee joints. Conclusion : From these findings it can be concluded that unbalanced H/Q ratio can be considered as a predictor of knee joint injury at the time of drop landing.

A Node Scheduling Control Scheme with Time Delay Requirement in Wireless Sensor Actuator Networks (무선 센서 엑츄에이터 네트워크에서의 시간지연을 고려한 노드 스케줄링 제어 기법)

  • Byun, Heejung
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.17-23
    • /
    • 2016
  • Wireless sensor-actuator networks (WSANs) enhance the existing wireless sensor networks (WSNs) by equipping sensor nodes with an actuator. The actuators work with the sensor nodes and perform application-specific operations. The WSAN systems have several applications such as disaster relief, intelligent building, military surveillance, health monitoring, and infrastructure security. These applications require capability of reliable data transfer to act responsively and accurately. Biologically inspired modeling techniques have received considerable attention for achieving robustness, scalability, and adaptability, while retaining individual simplicity. In this paper, an epidemic-inspired algorithm for data dissemination with delay constraints while minimizing energy consumption in WSAN is proposed. The steady states and system stability are analyzed using control theory. Also, simulation results indicate that the proposed scheme provides desirable dissemination delay and energy saving.

Control Method of Adaptive Duty-cycling for Monitoring System in Excavations (굴착현장 모니터링 시스템을 위한 적응적인 듀티사이클링 제어 기법)

  • Kim, Taesik;Min, Hong;Jung, Jinman
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.141-146
    • /
    • 2016
  • Geotechnial engineering projects that requires excavation activity can cause massive ground deformation and this can damage adjacent structures. Depending on the engineering characteristics of ground material and the excavation depth, the ground movement is various. To overcome this issue, the ground deformation is monitored by multiple sensors. Typically, an inclinometer is installed behind the support wall. In this paper, we present an adaptive duty-cycling control mechanism using wireless sensors for monitoring ground deformation in excavations. The proposed mechanism dynamically adjusts the sleep time based on the urgency degree of sensed data from inclinometer. Through analytical evaluation of expected latency time, we confirm our adaptive duty-cycling mechanism has lower latency compared with periodic duty-cycling mechanism under variable conditions.

Characterization and Solution Behavior of Polyethylene-based Ionomer Particles in Water (물에서의 폴리에틸렌계 아이오노머 입자 특성과 용액 거동)

  • Yeo, Sang Ihn;Woo, Kyu Whan
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.5
    • /
    • pp.512-518
    • /
    • 1998
  • In this study, various thermodynamic and hydrodynamic parameters characterizing the solution properties of polyethylene ionomer particles in water were determined at $30^{\circ}C$ by means of light scattering and viscosity measurements. Based on the experimental data, we investigated the solution behavior of three kinds of polyethylene ionomers, which are different in composition of the pendant ionic groups of COOK, COOH and $CONH_{2}$, and characterized their particle properties. Ionomers containing 7.6 mol% potassium salt only behave as flexible coils in a relatively good solvent state. On the other hand, two ionomers containing 3.8 mol% amide group together with potassium salt form the compact particles. In addition, the concentration dependence of the effective diffusion coefficient $(D_{eff})$ and the reduced viscosity of the latter ionomers showed the opposite trend from the former, indicating that the composition of the pendant ionic groups have a great influence on the interparticle interaction of ionomers formed in water.

  • PDF

A Study on the Solar Panel Deployment of a Satellite (인공위성 태양전지판의 전개에 관한 연구)

  • Seo, Jong Hwi;Han, Sang Won;Park, Tae Won;Chae, Jang Su;Seo, Hyeon Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.53-59
    • /
    • 2003
  • Strain Energy Hinge(SEH) has been used in Korea Multi-purpose Satellite(KOMPSAT) series to deploy the solar panel due to the good record of reliability. However, when it reached a desired deployment position, a large buckling force is applied to the main body. This may cause structural damage and also affect control of the satellite. Therefore, reliable dynamic analysis for the deployment system is required at a design stage. Moreover, various mission of a satellite has made the size of solar panels got bigger, so elastic effect has to be considered seriously to get more precise analysis results. In this paper, a dynamic analysis method to predict the deployment is verified by KOMPSAT-2 deployment test.

Effects of Hamstring Flexibility and Dynamic Stability of Lower Lumbar according to Stretching and Massage Techniques (스트레칭과 마사지 기법이 넙다리뒤근의 유연성 및 아래 허리뼈의 동적 안정성에 미치는 영향)

  • Kim, Gi-Chul;Lee, Jeon-Hyeong;Kwon, Sang-Min
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.4
    • /
    • pp.609-617
    • /
    • 2013
  • PURPOSE: This study aims to provide effects of therapeutic techniques as well as basic materials of safety by comparing and analyzing the effects of hamstring flexibility and dynamic stability of lower lumbar according to Stretching and Massage Techniques to adults with reduced the flexibility of hamstring. METHODS: This study conducted differential diagnosis through sit and reach test(SRT) and Schober test to select subjects who have shortened hamstring without any spinal problem. Selected subjects were divided into two groups randomly; HSG(Hamstring Stretching Group, n=8) and HMG(Hamstring Massage Group, n=8) and they received treatment for 2 weeks. To take statistics, SRT and dynamic view using x-ray were used. RESULTS: On SRT, HSG and HMG showed significant difference between pre and post test. A comparison of the difference value between HSG and HMG, HSG($9.73{\pm}1.78$) has more remarkable outcome than HMG($2.78{\pm}0.56$). Lower lumbar intervertebral disc length test for Intervertebral disc length(IDL)L45 and IDLL5S1 did not show significant differences between two groups and difference value. CONCLUSION: This study showed that stretching is more effective to improve hamstring flexibility than massage technique. Especially, flexibility increase of the hamstring in vertebral stabilization cannot affect improvement possibility will make a flexibility in order and the intervention and stabilization exercise of the spine.

The Effect of Asymmetric Lower-Extremity Muscle Force of Elementary Students on Dynamic Balance during Walking (하지 근력의 좌우 비대칭성이 초등학생의 보행 동적안정성에 미치는 영향)

  • Kim, Gun-Soo;Chae, Woen-Sik;Yoon, Chang-Jin;Lee, Haeng-Seob;Kang, Nyeon-Ju;Kim, Dong-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.309-315
    • /
    • 2011
  • The purpose of this study was to evaluate the effect of asymmetric muscle force in lower extremity on dynamic balance during walking. Sixteen elementary students(age: 12.3${\pm}$0.7 yrs, height: 149.4${\pm}$9.7 cm, weight 40.6${\pm}$7.8 kg) who have no musculoskeletal disorder were recruited as the subjects. Temporal parameters, M-L inclination angle of XCoM-CoP, M-L and A-P CoP, loading rate, and decay rate were determined for each trial. For each dependent variable, a independent-sample t-test was performed to test if significant difference existed between each conditions(p<.05). The displacement of antero-posterior COP during RTO-LHC1 in SG was siginificantly smaller than corresponding value in AG. In contrast, the displacement of medio-lateral COP during RTO-LHC1 in SG was greater than those of AG. It seems that imbalance of muscle force may result in increasing the medio-lateral stance in order to minimize the instability. We found that the asymmetric muscle force in the lower extremity may be a reason for the awkward control of impact force.

The Effect of Asymmetric Muscle Force in the Lower Extremity on Dynamic Balance on during Drop Landing (하지근력의 좌우 비대칭성이 드롭랜딩 시 동적 안정성에 미치는 영향)

  • Kim, Chul-Ju;Lee, Kyung-Il;Hong, Wan-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.173-179
    • /
    • 2011
  • This study aims to analyse difference in biomechanical factors between dominant legs and recessive ones according to muscular imbalance during drop landing targeting talented children in sports. The subjects of the study were ten primary students who are attending to Sports Program for Talented Children organized by C university (age: $12.28{\pm}0.70$ year, height: $1.52{\pm}0.11$ m, and weight: $45.2{\pm}4.9$ kg). Strength legs were classified into dominant side and strengthless legs were classified into non-dominant legs. For three-dimensional analyses of the data collected, 6 video cameras(MotionMaster200, Visol, Korea) were used. To analyse ground reaction force, two force platforms(AMTI ORG-6, MA) were used and to analyse electromyograghy a 8-channeled wireless Noraxon Myoresearch made in USA was used at 1000 Hz for sampling. As a result, it was discovered that the dominants legs controlled knee bending motions more stably than strengthless legs as the maximum vertical ground reaction force was significantly high in dominant legs(p<.05), and joint moment of knee joints of the dominant legs was high(p<.05). Therefore, this study suggested that injury prevention program focusing on muscular balance as well as the existing sports programs for talented children should be developed based on results of the study and it is expected that the results will be useful for improvement of sports programs for talented children.

Dip Estimation for Overhead Transmission Conductor using Catenary Angle (카테너리 각도를 이용한 가공송전도체의 이도 추정)

  • Kim, Sung-Duck;Sohn, Hong-Kwan;Jang, Tae-In
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.112-119
    • /
    • 2007
  • Under normal operating condition, the conductor of overhead transmission line could be always hold it's clearance within the safety margin that is specified in the line design guide of power company. Hence it may be very important to measure/or monitor the dip of the conductor, when building a new line, re-tensioning for an aged conductor, or monitoring dynamic line rating to maximize power capability. In this paper, we suggest a new method to estimate the dip and tension by catenary angle of the conductor. Since most conductors in overhead transmission lines show typical catenary curves, it can be uniquely determined the catenary curve for the conductor from the catenary angle at tower. Based on the catenary curve, the dip or horizontal tension can be easily estimated. Through some simulation and simple experimental results, it is verified that the suggested method can be effectively applied to measure/or monitor conductor dips and tensions in the overhead transmission lines.

Prop-blade Cross Section Design for QTP-UAV (쿼드 틸트 프롭로터 무인기용 프롭-블레이드 단면 설계)

  • Kim, Taejoo;Cho, Jin Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.845-855
    • /
    • 2018
  • Cross section design of a prop-blade is carried out for VTOL(Vertical Takeoff and Landing) Quad Tilt Prop-rotor UAV with a maximum takeoff weight of 55 kg and a maximum cruising speed of 180 km/h. Design procedure for cross section design is established and design requirements for prop-blade are identified. Through the procedure, cross section design is carried out to meet the identified requirements. Main design factors including stiffness, weight per unit length, and elastic axis are obtained by using a finite element section analysis program, and the design weight of the prop-blade is predicted. The obtained design factors are used along with the rotor system analysis program CAMRAD II to evaluate the dynamic stability of prop-blade in operating environment. In addition, the prop-blade load is obtained by CAMRAD II software, and it is used to verify the safety of the prop-blade structure. If the design results are not satisfactory, design changes are made in an iterative manner until the results satisfy the design requirements.