• Title/Summary/Keyword: 동적서비스

Search Result 1,642, Processing Time 0.02 seconds

Analyzing Topic Trends and the Relationship between Changes in Public Opinion and Stock Price based on Sentiment of Discourse in Different Industry Fields using Comments of Naver News (네이버 뉴스 댓글을 이용한 산업 분야별 담론의 감성에 기반한 주제 트렌드 및 여론의 변화와 주가 흐름의 연관성 분석)

  • Oh, Chanhee;Kim, Kyuli;Zhu, Yongjun
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.1
    • /
    • pp.257-280
    • /
    • 2022
  • In this study, we analyzed comments on news articles of representative companies of the three industries (i.e., semiconductor, secondary battery, and bio industries) that had been listed as national strategic technology projects of South Korea to identify public opinions towards them. In addition, we analyzed the relationship between changes in public opinion and stock price. 'Samsung Electronics' and 'SK Hynix' in the semiconductor industry, 'Samsung SDI' and 'LG Chem' in the secondary battery industry, and 'Samsung Biologics' and 'Celltrion' in the bio-industry were selected as the representative companies and 47,452 comments of news articles about the companies that had been published from January 1, 2020, to December 31, 2020, were collected from Naver News. The comments were grouped into positive, neutral, and negative emotions, and the dynamic topics of comments over time in each group were analyzed to identify the trends of public opinion in each industry. As a result, in the case of the semiconductor industry, investment, COVID-19 related issues, trust in large companies such as Samsung Electronics, and mention of the damage caused by changes in government policy were the topics. In the case of secondary battery industries, references to investment, battery, and corporate issues were the topics. In the case of bio-industries, references to investment, COVID-19 related issues, and corporate issues were the topics. Next, to understand whether the sentiment of the comments is related to the actual stock price, for each company, the changes in the stock price and the sentiment values of the comments were compared and analyzed using visual analytics. As a result, we found a clear relationship between the changes in the sentiment value of public opinion and the stock price through the similar patterns shown in the change graphs. This study analyzed comments on news articles that are highly related to stock price, identified changes in public opinion trends in the COVID-19 era, and provided objective feedback to government agencies' policymaking.

Research Trends of Health Recommender Systems (HRS): Applying Citation Network Analysis and GraphSAGE (건강추천시스템(HRS) 연구 동향: 인용네트워크 분석과 GraphSAGE를 활용하여)

  • Haryeom Jang;Jeesoo You;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.57-84
    • /
    • 2023
  • With the development of information and communications technology (ICT) and big data technology, anyone can easily obtain and utilize vast amounts of data through the Internet. Therefore, the capability of selecting high-quality data from a large amount of information is becoming more important than the capability of just collecting them. This trend continues in academia; literature reviews, such as systematic and non-systematic reviews, have been conducted in various research fields to construct a healthy knowledge structure by selecting high-quality research from accumulated research materials. Meanwhile, after the COVID-19 pandemic, remote healthcare services, which have not been agreed upon, are allowed to a limited extent, and new healthcare services such as health recommender systems (HRS) equipped with artificial intelligence (AI) and big data technologies are in the spotlight. Although, in practice, HRS are considered one of the most important technologies to lead the future healthcare industry, literature review on HRS is relatively rare compared to other fields. In addition, although HRS are fields of convergence with a strong interdisciplinary nature, prior literature review studies have mainly applied either systematic or non-systematic review methods; hence, there are limitations in analyzing interactions or dynamic relationships with other research fields. Therefore, in this study, the overall network structure of HRS and surrounding research fields were identified using citation network analysis (CNA). Additionally, in this process, in order to address the problem that the latest papers are underestimated in their citation relationships, the GraphSAGE algorithm was applied. As a result, this study identified 'recommender system', 'wireless & IoT', 'computer vision', and 'text mining' as increasingly important research fields related to HRS research, and confirmed that 'personalization' and 'privacy' are emerging issues in HRS research. The study findings would provide both academic and practical insights into identifying the structure of the HRS research community, examining related research trends, and designing future HRS research directions.