• Title/Summary/Keyword: 동적붕괴

Search Result 102, Processing Time 0.029 seconds

3-D Configuration Effects of Prestressing Cable Bracing Used for Retrofitting a RC Frame Subjected to Seismic Damage (RC 골조의 내진 보강을 위한 예압 가새의 3-D 배치)

  • Lee, Jin-Ho;Oh, Sang-Gyun;Hisham, El-Ganzori
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.183-191
    • /
    • 2003
  • A four-story reinforced concrete moment resisting frame damaged from an ultimate limit state earthquake is upgraded with prestressing cable bracing. The purpose of this study is to investigate the bracing configuration effects on the 3-D building response using thee different locations of the bracing systems for the retrofitted building. Since the previous work done by the author proved that static incremental loads to collapse analysis as a substitute to dynamic non-linear time history analysis was a valid alternative tool. Thus, static load to collapse analysis is solely applied to evaluate the seismic performance parameters of both the original and upgraded buildings in this study. In results, the exterior bracing system is effective in restraining torsional behavior of the structure under seismic loads, and no sudden failure occurs in this system that enhances the ductility of the building due to the gradual change of building stiffness as the lateral load increases.

The Evaluation of Difference according to Image Scan Duration in PET Scan using Short Half-Lived Radionuclide (단 반감기 핵종을 이용한 PET 검사 시 영상 획득 시간에 따른 정량성 평가)

  • Hong, Gun-Chul;Cha, Eun-Sun;Kwak, In-Suk;Lee, Hyuk;Park, Hoon;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.102-107
    • /
    • 2012
  • Purpose : Because of the rapid physical decay of the short half-lived radionuclide, counting of event for image is very limited. In this reason, long scan duration is applied for more accurate quantitative analysis in the relatively low sensitive examination. The aim of this study was to evaluate the difference according to scan duration and investigate the resonable scan duration using the radionuclide of 11C and 18F in PET scan. Materials and Methods : 1994-NEMA Phantom was filled with 11C of $30.08{\pm}4.22MBq$ and 18F of $40.08{\pm}8.29MBq$ diluted with distilled water. Dynamic images were acquired 20frames/1minute and static image was acquired for 20minutes with 11C. And dynamic images were acquired 20frames/2.5minutes and static image was acquired for 50minutes with 18F. All of data were applied with same reconstruction method and time decay correction. Region of interest (ROI) was set on the image, maximum radioactivity concentration (maxRC, kBq/mL) was compared. We compared maxRC with acquired dynamic image which was summed one bye one to increase the total scan duration. Results : maxRC over time of 11C was $3.85{\pm}0.45{\sim}5.15{\pm}0.50kBq/mL$ in dynamic image, and static image was $2.15{\pm}0.26kBq/mL$. In case of 18F, the maxRC was $9.09{\pm}0.42{\sim}9.48{\pm}0.31kBq/mL$ in dynamic image and $7.24{\pm}0.14kBq/mL$ in static. In summed image of 11C, as total scan duration was increased to 5, 10, 15, 20minutes, the maxRC were $2.47{\pm}0.4$, $2.22{\pm}0.37$, $2.08{\pm}0.42$, $1.95{\pm}0.55kBq/mL$ respectively. In case of 18F, the total scan duration was increased to 12.5, 25, 37.5, and 50minutes, the maxRC were $7.89{\pm}0.27$, $7.61{\pm}0.23$, $7.36{\pm}0.21$, $7.31{\pm}0.23kBq/mL$. Conclusion : As elapsed time was increased after completion of injection, the maxRC was increased by 33% and 4% in dynamic study of 11C and 18F respectively. Also the total scan duration was increased, the maxRC was reduced by 50% and 20% in summed image of 11C and 18F respectively. The percentage difference of each result is more larger in study using relatively shorter half-lived radionuclide. It appears that the accuracy of decay correction declined not only increment of scan duration but also increment of elapsed time from a starting point of acquisition. In study using 18F, there was no big difference so it's not necessary to consider error of quantitative evaluation according to elapsed time. It's recommended to apply additional decay correction method considering decay correction the error concerning elapsed time or to set the scan duration of static image less than 5minutes corresponding 25% of half life in study using shorter half-lived radionuclide as 11C.

  • PDF

Dynamic-stability Evaluation of Unsaturated Road Embankments with Different Water Contents (함수비에 따른 불포화 도로성토의 동적 안정성 평가)

  • Lee, Chung-Won;Higo, Yosuke;Oka, Fusao
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.5-21
    • /
    • 2014
  • It has been pointed out that the collapses of unsaturated road embankments caused by earthquake are attributed to high water content caused by the seepage of the underground water and/or the rainfall infiltration. Hence, it is important to study influences of water content on the dynamic stability and deformation mode of unsaturated road embankments for development of a proper design scheme including an effective reinforcement to prevent severe damage. This study demonstrates dynamic centrifugal model tests with different water contents to investigate the effect of water content on deformation and failure behaviors of unsaturated road embankments. Based on the measurement of displacement, the pore water pressure and the acceleration during dynamic loading, dynamic behavior of the unsaturated road embankments with about optimum water content and the higher water content than the optimum one have been examined. In addition, an image analysis has revealed the displacement field and the distributions of strains in the road embankment, by which deformation mode of the road embankment with higher water content has been clarified. It has been confirmed that in the case of higher water content the settlement of the crown is large mainly owing to the volume compression underneath the crown, while the small confining pressure at the toe and near the slope surface induces large shear deformation with volume expansion.

A Comparison Study of Model Reduction Method with Direct Impact Analysis of Truck-column Collision (모델축소법을 이용한 교각-차량 충돌변위 예측 및 직접충돌해석법과의 비교연구)

  • Lee, Jaeha;Kim, Kyeongjin;Jeong, Yoseok;Kim, Wooseok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.675-682
    • /
    • 2015
  • Current design codes such as AASHTO LRFD or Korean Highway Bridge Design Code recommend of using static force for designing bridge column against vehicle collisions. However, there was an accident that the bridge was collapsed shortly after vehicle impact on bridge pier in Nebraska(near Big Spring, 2003). It was found that the second largest cause of bridge collapse is collision after hydraulic causes. It can be thought that the possibility of truck-bridge collision are getting increasing as the size of truck increases and traffic condition are becoming improved. However, dynamic behavior under the impact loading seldom considered in bridge design procedure due to computational cost and time. In this study, in order to reduce the computational cost for dynamic impact analysis, model reduction method was developed. Obtained results of residual displacement were compared with the results of direct impact simulations.

Development of Numerical Model for Mixed Soil Problems Using Dry Bulk Density and Investigation of Its Numerical Stability (건조체적밀도를 적용한 혼합토사 수치모델의 개발과 수치적 안정성 평가)

  • Cho, Yong-Hwan;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.110-121
    • /
    • 2021
  • The importance of tidal flats lost due to industrialization has recently received attention, and attention is being paid to the creation of artificial tidal flats and maintenance of natural tidal flats. However, there is still a lack of understanding about the behavioral characteristics of mud, mud, and sand that form tidal flats. Although research on the movement characteristics of mixed soils such as tidal flats has been conducted through field investigations and hydraulic experiments, interest in developing a numerical model based on these results has not yet reached. In this paper, the purpose of this paper is to establish a mixed soil model that can efficiently manage the low quality of the tidal flats. In constructing a model for reproducing the surface movement of mixed soil, the numerical stability of the reproduction and movement of sand and mud constituting the mixed soil in the numerical model should be considered first, so first, the volume of sand and mud constituting the mixed soil A mixed soil model representing the relationship was proposed based on a topographical diagram representing the geometric structure of the mixed soil. In order to consider the dry bulk density of the mixed soil, it was possible to consider the dry bulk density of the mud by introducing the water content of the mud containing water. In addition, it was confirmed that the mud and sand movement calculation according to the slope collapse of the mixed soil was stably performed through the calculation of the slope collapse of the mixed soil through the numerical analysis model to which the proposed mixed soil model was applied.

Study on Shear Strength Using a Portable Dynamic Cone Penetration Test and Relationship between N-Nc (소형동적콘관입시험을 이용한 전단강도 산정 및 N-Nc 상관관계 연구)

  • Kim, Hyukho;Lim, Heuidae
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.145-157
    • /
    • 2017
  • Because of Recent intensive rainfall, nationally landslides and slope failure phenomenon has been frequently occur. Providing proposed-measures to the natural disasters that occur in these localities and the slope, must be derived ground of strength parameters(shear strength) as a design input data. However, it is such as extra deforestation and a lot of economic costs in order to make the access to the current area and the slopes ground survey is required. Thus, by small dynamic cone penetration test machine using the human to carry in the field, it is possible to easily measure the characteristics and strength constant of the ground of more than one region. In this study through researching analysis of the domestic and foreign small dynamic cone penetration test method, it has proposed a cone material and test methods suitable for the country. Cone penetration test Nc in the field has comparated with analysis of the value and the standard penetration test N value. And, in addition to this, direct shear test and borehole shear test were performed by depth, bedrock, and soil type and passing #200 and the correlation of the Nc value. In particular, in the present study, for the sandy soil that has distict distribute in mountain, it is proposed relation of shear strength corresponding to the Nc value (cohesion and internal friction angle) in order to calculate such effective ground shear strength.

Dynamic Analysis of Structures with Continuous Transverse Reinforcement Applied (연속 횡방향철근을 적용한 구조물의 동적 해석)

  • Cho, Kyung Hun;Han, Soo Ho;Lee, Jung Bin;Kim, Sung Bo;Kim, Jang Jay Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.277-285
    • /
    • 2023
  • Recently, as the magnitude and frequency of earthquakes increases, research is needed to increase the ductility of the columns in order to prevent the collapse of structures. In this study, to evaluate the performance of columns reinforced with continuous transverse reinforcing bars, the FE model for the dynamic analysis of structures reinforced with continuous transverse reinforcing bars for circular and rectangular columns is to be verified using the results of uniaxial compression experiments in the previous study. As a result, the experimental value of the column reinforced with continuous transverse reinforcement and the result value related to the dynamic analysis showed similar behavior, and the reliability was high. As a result of the analysis, the usability of the rectangular column reinforced with continuous lateral reinforcing bars was confirmed because the dissipated energy performance of the columns reinforced with spiral reinforcing bars was higher than that of the columns reinforced with band reinforcing bars.

Study on 3-D Simulation for Overriding Evaluation of Urban Train (도시철도차량 타고오름 평가를 위한 3 차원 충돌시뮬레이션 기법 연구)

  • Jin, Sung Zu;Jung, Hyun Seung;Kwon, Tae Soo;Kim, Jin Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1063-1068
    • /
    • 2015
  • In this paper, we propose a collision simulation technique the evaluation of urban trains. We perform simulation that include a dynamics bogie model which represents the dynamic behavior of bogies and a finite-element model that can model crash behavior. We perform simulation in accordance with the 40-mm vertical offset head-on scenario for overriding the evaluation of the EU and domestic crashworthiness regulations. We evaluate the overriding by the vertical displacement of the wheelset using the overriding evaluation standard. Finally, if proposed simulation technique is applied, we can evaluate the overriding for urban-train crashworthiness regulations.

Seismic Performance Evaluation of Seismic Strengthening Method using SRCF External Connection of Medium and Low-rise R/C Buildings (중·저층 철근콘크리트 건물의 SRCF 외부접합 내진보강공법의 내진성능 평가)

  • Lee, Kang-Seok;Jung, Jue-Seong;Lee, Jong-Kweon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2015
  • A new SRCF (Steel Reinforced Concrete Frame) external connection method for seismic strengthening of medium-and low-rise reinforced concrete buildings is reported in this paper. The SRCF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside building. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and deformation. Test results revealed that the proposed SRCF strengthening method installed in RC frame enhanced conspicuously the strength and deformation capacities, and the method can resist markedly under the large scaled earthquake intensity level.

An Effective Anonymization Management under Delete Operation of Secure Database (안전한 데이터베이스 환경에서 삭제 시 효과적인 데이터 익명화 유지 기법)

  • Byun, Chang-Woo;Kim, Jae-Whan;Lee, Hyang-Jin;Kang, Yeon-Jung;Park, Seog
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.3
    • /
    • pp.69-80
    • /
    • 2007
  • To protect personal information when releasing data, a general privacy-protecting technique is the removal of all the explicit identifiers, such as names and social security numbers. De-identifying data, however, provides no guarantee of anonymity because released information can be linked to publicly available information to identify them and to infer information that was not intended for release. In recent years, two emerging concepts in personal information protection are k-anonymity and $\ell$-diversity, which guarantees privacy against homogeneity and background knowledge attacks. While these solutions are signigicant in static data environment, they are insufficient in dynamic environments because of vulnerability to inference. Specially, the problem appeared in record deletion is to deconstruct the k-anonymity and $\ell$-diversity. In this paper, we present an approach to securely anonymizing a continuously changeable dataset in an efficient manner while assuring high data quality.