• Title/Summary/Keyword: 동적모드

Search Result 573, Processing Time 0.023 seconds

Congestion Control of Self-Similar Traffic in Two-way Network (양방향 네트워크에서 자기유사성 트래픽 혼잡 제어)

  • 석경휴;송선희;김철영;나상동
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.295-303
    • /
    • 2004
  • In this Paper, we discuss an active TCP link of unsynchronized transmission mode network in two-way traffic and the Improvement of its traffic patron thorough the network pathway of protocol is shown. This is because the traffic pattern is performed on the basis of existing windows which are distributing information in several periods of time in the way of interfacing LTS control module, which is controlling by an information of exceeding the time limit of feedback loop determined by RTP, with TCP. The simulation to utilize this efficiently is performed with the circumstance of bench mark based on physical modeling of the self-similarity traffic in the performance of TCP. In this paper, we use a methodology to understand and evaluate the effect of change of transmitting protocol in sticks under the condition of the self-similar traffic in two-way network and it is shown that an improvement of congestion control by self-similarity under a heavy condition.

The Design and Implementation of Improved Anti-Collision Algorithm for Vehicle User Authentication System (차량 사용자 인증 시스템을 위한 향상된 충돌 방지 알고리즘의 설계 및 구현)

  • Kim, Kyeong-Seob;Lee, Yun-Seob;Choi, Sang-Bang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.57-67
    • /
    • 2013
  • Because many of the FOB key, anti-collision algorithm for a seamless multi-access is applied to the smart-key system. In this paper, we have designed and implemented improved anti-collision algorithm that dramatically reduces the communication response time required in the user authentication process immediately after by dynamically changing the order in which the request of the user ID as the user ID on immediately before in the smart key system for vehicles that use many of the FOB key. In order to evaluate the performance of the system the improved anti-collision algorithm is applied, we show the behavior of the algorithm implemented in the state actually mounted on the vehicle and verify that communication response time required for many of the FOB key was reduced by about 33% compared to existing algorithms.

Signal Processing in Medical Ultrasound B-mode Imaging (의료용 초음파 B-모드 영상을 위한 신호처리)

  • Song, Tai-Kyong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.521-537
    • /
    • 2000
  • Ultrasonic imaging is the most widely used modality among modern imaging device for medical diagnosis and the system performance has been improved dramatically since early 90's due to the rapid advances in DSP performance and VLSI technology that made it possible to employ more sophisticated algorithms. This paper describes "main stream" digital signal processing functions along with the associated implementation considerations in modern medical ultrasound imaging systems. Topics covered include signal processing methods for resolution improvement, ultrasound imaging system architectures, roles and necessity of the applications of DSP and VLSI technology in the development of the medical ultrasound imaging systems, and array signal processing techniques for ultrasound focusing.

  • PDF

An Energy-Dissipation-Ratio Based Structural Health Monitoring System (에너지소산률을 이용한 구조물의 건전도 모니터링에 관한 연구)

  • Heo, Gwang-Hee;Shin, Heung-Chul;Shin, Jae-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.165-174
    • /
    • 2004
  • This research develops a technique which uses energy dissipation ratio in order to monitor the structural health on real time basis. For real-time monitoring, we employ the NExT and the ERA which enable us to obtain real-time data. Energy dissipation ratio is calculated from those data only with the damping and natural frequency of the structure, and from the calculated values we develop an algorithm (Energy dissipation method) which decides the damage degree of structure. The Energy dissipation method developed in this research is proved to be valid by comparison with other methods like the eigenparameter method and the MAC. Especially this method enables us to save measuring time and data which are the most important in real-time monitoring, and its use of the ambient vibration also makes it easy to monitor the whole structure and its damage points.

Free Vibration Analysis of Non-symmetric Thin-Walled Curved Beams with Shear Deformation (전단변형을 고려한 비대칭 박벽 곡선보의 자유진동해석)

  • Kim, Nam-Il;Kim, Moon-Young;Cheol, Min-Byoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.1-13
    • /
    • 2003
  • For spatial free vibration of non-symmetric thin-walled curved beams with shear deformation, an improved formulation is proposed in the present study. The elastic strain and the kinetic energies are first derived by considering constant curvature and shear deformation effects due to shear forces and restrained warping torsion. Next equilibrium equations and force-deformation relations are obtained using a stationary condition of total potential energy. And the finite element procedures are developed by using isoparametric curved beam element with arbitray thin-walled sections. Particularly not only shear deformation and thickness-curvature effects on vibration behaviors of curved beams but also mode transition and crossover phenomena with change in curvatures of beams are parametrically investigated. In order to illustrate the accuracy and the reliability of this study, various numerical solutions for spatial free vibration are compared with results by available references and ABAQUS's shell element.

Study on Pressure Fluctuations Observed in Combustion of Oxygen-Rich Preburners (산화제 과잉 예연소기 연소에서 관찰되는 압력섭동에 대한 연구)

  • Seo, Seonghyeon;Kang, Sang Hun;Lee, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.122-127
    • /
    • 2013
  • The paper includes the analytic results of pressure fluctuation data from the combustion of an oxidizer-rich preburner applicable to high-performance, closed-cycle liquid rocket engine systems. The combustion experiments went through two different steps of a chamber pressure during single run. Self-excited pressure fluctuations with a frequency of 78 Hz were observed only at the relatively low chamber pressure condition. These pressure fluctuations are regarded as a bulk mode. The intensity of pressure fluctuations by a root-mean-square value is 13.3% normalized by the chamber static pressure and no pressure excitation was observed at the design pressure condition. The bulk mode has an identical phase across the inside of the chamber and reveals the similar characteristics to the Helmholtz resonator.

Optimization Techniques for Power-Saving in Real-Time IoT Systems using Fast Storage Media (고속 스토리지를 이용한 실시간 IoT 시스템의 전력 절감 최적화 기술)

  • Yoon, Suji;Park, Heejin;Cho, Kyungwoon;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.71-76
    • /
    • 2021
  • Recently, as the size of IoT data grows, the memory power consumption of real-time systems increases rapidly. This is because real-time systems always place entire tasks in memory, which increases the demand of DRAM significantly. In this paper, we adopt emerging fast storage media and move a certain portion of real-time tasks from DRAM to storage. The part of tasks in storage are, then, loaded into memory when they are actually used. We incorporate our memory/storage power-saving into the dynamic voltage/frequency scaling of processors, thereby optimizing power consumptions in CPU and memory simultaneously. Specifically, the proposed technique aims at minimizing the CPU idle time and the DRAM memory size by determining appropriate voltage modes of CPU and the swap ratio of memory, without violating the deadlines of all tasks. Through simulation experiments, we show that the proposed technique significantly reduces the power consumption of real-time systems.

Prediction of Material Properties of Carbon Fiber Prepreg in the Laminated Composite Using Reverse Analysis with Dynamic Characteristics (동적 특성이 고려된 역해석를 이용한 적층 복합재료 내부의 탄소섬유 프리프레그의 물성 예측)

  • Hwang, Mun-Young;Kang, Lae-Hyong
    • Composites Research
    • /
    • v.32 no.4
    • /
    • pp.177-184
    • /
    • 2019
  • If what the mechanical properties according to a layer have was found out by analyzing the already fabricated composite, it could be possible to develop the composite of the better performance than the existing products. In this study, we tried to calculate the mechanical properties of the inner prepreg lamina by applying the reverse design technique to the composite structure made by laminating prepregs. When the physical quantities obtained by the simple tensile test are used alone and the physical quantities obtained by the tensile test and the mode analysis are used at the same time, the results of this study show that the accuracy of the latter is higher Finally, the maximum error of $E_1$ predicted was 0.09% and the maximum error of predicted $E_2$ was 7%.

The Efficacy of Three-Dimensional Sweeping Mode Extracorporeal Shockwave Treatment for Plantar Fasciitis (3차원 동적집속모드 체외충격파 기기를 이용한 족저근막염 치료의 유용성)

  • Lim, Joo Ae;Lee, Chan Hee;Park, Jae Han
    • Journal of Korean Foot and Ankle Society
    • /
    • v.26 no.2
    • /
    • pp.84-87
    • /
    • 2022
  • Purpose: This was a pilot study to examine the clinical usefulness of the newly developed three-dimensional sweep mode extracorporeal shockwave treatment (ESWT) in patients with plantar fasciitis. Materials and Methods: Three-dimensional sweep mode ESWT was performed once a week for 5 weeks in patients with plantar fasciitis who showed no improvement with the conventional conservative treatment. A 100-mm visual analogue scale (VAS) reading for pain from walking and at rest after walking were collected before the treatment and 8 and 16 weeks after the initial treatment. In addition, the Foot and Ankle Outcome Score (FAOS) and EuroQol-5-dimension (EQ-5D) scores before and 16 weeks after the treatment were evaluated. Results: VAS for pain for walking improved from 50.60±8.38 to 19.80±15.61 at 8 weeks after the initial treatment (p=0.008) and 9.80±9.62 at 16 weeks after the treatment (p<0.001). VAS for pain at rest after walking improved from 36.60±19.55 to 11.80±12.95 at 8 weeks after the initial treatment (p=0.052) and 8.80±8.87 at 16 weeks after the treatment (p=0.024). Preoperative FAOS increased from an average of 74.80±9.73 before the treatment to an average of 81.00±8.86 at week 16 after the procedure (p=0.49) and compared to pre-treatment levels, there was a decrease of one level in the anxiety/depression domain of the EQ-5D, post-treatment. Conclusion: The results of this preliminary study confirmed that the newly developed EWST with the smart forging sweep mode was effective in improving pain and function in plantar fasciitis.

Real Time Fault Diagnosis of UAV Engine Using IMM Filter and Generalized Likelihood Ratio Test (IMM 필터 및 GLRT를 이용한 무인기용 엔진의 실시간 결함 진단)

  • Han, Dong-Ju;Kim, Sang-Jo;Kim, Yu-Il;Lee, Soo-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.541-550
    • /
    • 2022
  • An effective real time fault diagnosis approach for UAV engine is drawn from IMM filter and GLRT methods. For this purpose based on the linear diagnosis model derived from engine dynamic performance analysis the Kalman filter for residual estimation and each method are applied to the fault diagosis of the actuator for engine control sensors. From the process of the IMM filter application the effective FDI measure is obtained and the state responses due to actuator fault are estimated. Likewise from the GLRT method the fault magnitudes of actuator and sensors are estimated associated with some FDI functionings. The numerical simulations verify the effectiveness of the IMM filter for FDI and the GLRT in estimating the fault magnitudes of each fault mode.