• Title/Summary/Keyword: 동적균열전파 속도

Search Result 31, Processing Time 0.025 seconds

Peridynamic models for dynamic fracture in brittle materials (취성 재료의 동적 파괴 해석을 위한 Peridynamics 모델)

  • Ha, Youn-Doh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.561-564
    • /
    • 2011
  • 다양한 공학/산업적 측면에서 동적 취성 파괴 현상은 매우 중요하다. 취성 균열은 다른 균열 전파에 비해 그 전파 속도가 매우 빠르고 전파 범위가 넓기 때문에 대규모의 파괴 현상을 일으킨다. 동적 전파 중인 취성 균열 거동을 모델화하기 위해 오랜 기간 동안 많은 연구가 진행되었지만, 여전히 많은 부분들이 해석되지 못한 채 남아있다. 특히 균열 생성 및 전파를 위해 인위적인 조건들을 도입해야 하는 것은 기존 방법론들이 가지는 공통적인 문제점이다. 본 연구는 peridynamics를 동적 분기 균열 문제 해석에 도입한다. Peridynamics는 전통적인 연속체 이론에 기반한 수치해석 모델화 기법으로 균열과 같은 비연속성이 있는 문제의 모델화에 강점이 있으며, 인위적인 조건 없이 매우 간단한 방법으로 파괴 현상을 해석할 수 있다. 본 연구에서는 peridynamics 모델이 실험적으로 관측된 분기균열 형상과 균열 전파 속도를 매우 잘 예측해 낼 수 있음을 보인다. 또한 균열팁 주변에 높은 응력이 발생할 때 나타나는 연쇄 분기 현상도 해석할 수 있다. 이와 같은 연구를 통해 응력파가 균열 전파 속도를 변화시키고 전파 방향에도 영향을 주는 것을 알 수 있었다. 수치해석 결과도 또한 실험 결과들과 잘 부합함을 확인하였다.

  • PDF

Dynamic Stress Intensity Factor and Dynamic Crack Propagation Velocity in Nuclear Pressure Vessel Steels (원자로압력용기강의 동적 응력확대계수와 동적 균열전파속도)

  • Lee, O.S.;Han, M.K.;Han, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.251-257
    • /
    • 1998
  • 동적 파괴인성치 측정시스템과 동적 2차원 유한요소해석 프로그램을 개발하여 원자로압력용기에 사용하는 강(SA508 cl.3, SA516 gr.70)의 동적 파괴인성치와 동적 균열정지인성치를 평가하고 이에 대한 유용성을 확인하였으며, 이 시스템 을 이용하여 재료의 동적 파괴특성을 규명하였다. SA508 cl.3와 SA516 gr.70의 동적 균열전파속도(a)에 대응하는 동적 응력확대계수 (K(a))에 대한 실험식을 얻었으며, 동적 응력확대계수와 동적 균열전파속도와의 관계는 전형적인 "$\Gamma$" 형으로 나타남을 확인하였다.

  • PDF

Dynamic Brittle Fracture Captured with Peridynamics: Crack Branching Angle & Crack Propagation Speed (페리다이나믹스 해석법을 통한 동적취성 파괴거동해석: 분기 균열각도와 균열 전파속도)

  • Ha, Youn-Doh;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.637-643
    • /
    • 2011
  • The bond-based peridynamic model is able to capture many of the essential characteristics of dynamic brittle fracture observed in experiments: crack branching, crack-path instability, asymmetries of crack paths, successive branching, secondary cracking at right angles from existing crack surfaces, etc. In this paper we investigate the influence of the stress waves on the crack branching angle and the velocity profile. We observe that crack branching in peridynamics evolves as the phenomenology proposed by the experimental evidence: when a crack reaches a critical stage(macroscopically identified by its stress intensity factor) it splits into two or more branches, each propagating with the same speed as the parent crack, but with a much reduced process zone.

Measurement of Dynamic Crack Propagation Velocity in Polymers (고분자 재료의 동적 균열전파속도 측정)

  • 이억섭;한민구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.947-951
    • /
    • 1989
  • It is well-known that the parameters of dynamic fracture mechanics depend not only on dimensions, loading and boundary conditions but also on the dynamic crack propagation velocity. Because the measurement of dynamic crack propagation velocity measuring device which can easily be expanded without modification is proposed in this report. it was found that the experimentally determined dynamic crack propagation velocity agreed well with those from other investigations in some polymers such as PMMA. Homalite-100 and Epoxy.

Effect of Interface Hole Shape on Dynamic Interface Crack Propagation (계면에 존재하는 구멍의 모양이 동적 계면균열전파에 미치는 영향)

  • Yin, Hai-Long;Lee, Ouk-Sub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1217-1222
    • /
    • 2002
  • The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamically propagating behavior of the interface crack. This paper investigates the effects of the hole (existed along the path of the crack propagation) shape on the dynamic interface crack propagation behavior by comparing the experimental isochromatic fringes to the theoretical stress fields.

Propagation behavior of the interface crack through a hole (구멍을 통과하는 계면균열의 전파거동)

  • Lee, O.S.;Yin, H.L.;Hwang, S.W.;Byun, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.127-131
    • /
    • 2000
  • The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamically propagating behavior of an interface crack. This paper investigates determined the effects of the hole (existed on the path of the crack propagation) on the crack propagation behavior by comparing the experiment isochromatic fringes to the theoretical stress fields.

  • PDF

Propagation Behavior of the Interface Crack Through a Hole (구멍을 통과하는 계면균열의 전파거동)

  • Lee, Eok-Seop;Yun, Hae-Ryong;Hwang, Si-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2823-2827
    • /
    • 2000
  • The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamically propagating behavior of an interface crack. This paper investigates determined the effects of the hole (exited on the path of the crack propagation) on the crack propagation behavior by comparing the experiment isochromatic fringes to the theoretical stress fields.

Influence of Density Variation on Stress and Displacement Fields at a Propagating Mode-III Crack Tip in Orthotropic Functionally Graded Materials (밀도변화가 직교이방성함수구배재료에서 전파하는 모드 III 균열선단의 응력 및 변위장에 미치는 영향)

  • Lee, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1051-1061
    • /
    • 2011
  • The influences of density variation on stress and displacement fields at a propagating Mode-III crack tip in orthotropic functionally graded materials (OFGMs) are studied. The crack propagates dynamically at a right angle to the gradient of physical properties. Three kinds of elasticity and density gradients are analyzed in this study. They are as follows: (1) the density varies without elasticity variation, (2) the directions of the density and elasticity gradients are opposite to each other, and (3) same. For these cases, the stress and displacement fields at the crack tip are developed and the dynamic stress intensity factors for propagating cracks are also studied. When the crack speed is low, the influence of density variation on the stresses and displacement is low. However, when the crack speed is high, this influence is very high.

Analysis of Unsteady Propagation of Mode III Crack in Arbitrary Direction in Functionally Graded Materials (함수구배재료에서 임의의 방향을 따라 비정상적으로 전파하는 모드 III 균열해석)

  • Lee, Kwang Ho;Cho, Sang Bong;Hawong, Jai Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.143-156
    • /
    • 2015
  • The stress and displacement fields at the crack tip were studied during the unsteady propagation of a mode III crack in a direction that was different from the property graduation direction in functionally graded materials (FGMs). The property graduation in FGMs was assumed based on the linearly varying shear modulus under a constant density and the exponentially varying shear modulus and density. To obtain the solution of the harmonic function, the general partial differential equation of the dynamic equilibrium equation was transformed into a Laplace equation. Based on the Laplace equation, the stress and displacement fields, which depended on the time rates of change in the crack tip speed and stress intensity factor, were obtained through an asymptotic analysis. Using the stress and displacement fields, the effects of the angled property variation on the stresses, displacements, and stress intensity factors are discussed.

Dynamic Mode III Crack Propagated with Constant Velocity at Interface Between Isotropic and Orthotropic Material (등방성체와 직교이방성체의 접합계면네 내재된 동적모드 III 균열의 등속전파)

  • Lee, Gwang-Ho;Hwang, Jae-Seok;Yu, Jae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3828-3837
    • /
    • 1996
  • The dynamic problems of interface crack propagated with constant velocity along the interface of bimateraial composed of isotropic and orthotropicmaterial under antiplane loading condition are studied in this paper. The general dynamic stress fields and displacement fields of mode III are derived when interface crack between isotropic and orthotropic material is propagating with constant velocity. The general dynamic stress fields and displacement fields in isotropic material. Finally, the characteristics of interface crack propagation are studied with various properties of isotropic and orthotropic material and crack propagarion velocities.