• Title/Summary/Keyword: 동적강도

Search Result 520, Processing Time 0.026 seconds

Estimation of Dynamic Brazilian Tensile Strengths of Rocks Using Split Hopkinson Pressure Bar (SHPB) System (스플릿 홉킨슨 압력봉 실험장비를 이용한 암석의 동적 압열인장강도 평가에 관한 연구)

  • Yang, Jung-Hun;Ahn, Jung-Lyang;Kim, Seung-Kon;Song, Young-Su;Sung, Nak-Hoon;Lee, Youn-Kyou;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.109-116
    • /
    • 2011
  • In this study, we estimated the dynamic tensile strength and strain rate from Brazilian tensile test using Split Hopkinson Pressure Bar (SHPB) system. A pulse shaping technique, which controls the shape of the impactinduce incident waves, was used for achieving the dynamic stress equilibrium and constant strain rate before fracture of rock samples. Three kinds of rock type, Inada granite, Kimachi sandstone and Tage tuff were prepared as 50mm in diameter and 26 mm in thickness. The high-speed videography system was used to observe the fracture processes of the rock samples. As the results of the tests, the ratio of dynamic tensile strength and static tensile strength was 11.9 for Inada granite, 8.5 for Kimachi sandstone and 9.2 for Tage tuff.

Occurrence of Sand Liquefaction on Static and Cyclic Loading (정적 및 동적 하중에서 모래의 액상화 발생)

  • 양재혁
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.235-244
    • /
    • 2001
  • Liquefaction may be caused by sudden decrease in the soil strength under undrained conditions. This loss of soil strength is related to the development of excess pore pressures. During this study, fines content affects the maximum and minimum void ratios are investigated. The results of static and cyclic triaxial test on silty saturated sands are presented. These tests are performed to evaluate liquefaction strength and static and cyclic behavior characteristics. The samples are obtained from Saemangeum and drying on air. The main results are summarized as follows : 1) The maximum and minimum void ratio lines follow similar trends. 2) Maximum and minimum void ratios are established at 20~30% fines content. 3) As confining pressures and overconsolidation ratio are increased, the resistance to liquefaction are increased. 4) Instability friction angles are increased with increasing initial relative density. 5) The resistance to liquefaction are decreased with increasing effective stress ratio.

  • PDF

Experimental Study on the Material Properties of Unreinforced Masonry Considering Earthquake Load (지진하중을 고려한 비보강 조적조의 재료특성 평가에 관한 실험연구)

  • 김희철;김관중;박진호;홍원기
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.93-101
    • /
    • 2001
  • 본 논문은 국내의 비보강 조적조에 대해 내진성능을 조사하기 위하여 재료측성 평가를 위한 실험연구를 수행하였다. 실험결과를 바탕으로 조적용 모르터의 압축강도식을 제안하였다. 또한 조적용 모르터의 배합비에 따른 조적조 프리즘의 압축강도 특성을 비교하였다. 조적조 프리즘의 압축강도로써 조적조의 탄성계수를 구할 수 있는 약산식을 제시하였으며, 약산식을 사인장 조적조 실험을 통하여 구한 전단탄성계수값과 비교하여 볼 때 타당성을 가지고 있다고 판단된다. 실험결과로써 나온 재료특성 값을 바탕으로 2층 조적조 다세대 주택에 대한 유사동적해석을 수행하였다. 해석결과로 얻은 전단응력과 전단파괴가 나타난 사인장 조적조의 허용전단응력은 유사한 것으로 확인되었다.

  • PDF

Moving Object Feature Extraction for the Gesture Interaction (제스처 인터렉션 지원을 위한 동적 사용자 특징 추출)

  • Lee, Jea-Sung;Choi, Yoo-Joo
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.909-914
    • /
    • 2007
  • 본 논문은 조명변화가 심한 주변환경에서 동적객체의 특징정보를 안정적으로 추출하는 기법을 제시한다. 제안기법에서는 우선 조명변화의 효과를 최소화 하기위해 HSI 컬러공간에서 색상(Hue) 강도 및 색상기울기에 대한 평균값과 표준편차 값으로 이루어진 배경모델을 생성한다. 실시간으로 입력되는 동적 객체를 포함한 연속영상에 대하여 각 화소에 대한 색상(Hue) 성분을 추출하고 이웃 화소와의 색상성분에 대한 기울기 크기를 계산한다. 이를 기구축된 배경모델과 비교하여 그 차분값이 일정 임계값을 초과하는 경우 동적 객체의 영역으로 판별한다. 마지막으로 모폴로지 연산을 수행하여 배경영상의 노이즈 영역을 제거한다. 본 논문에서는 기존 동적객체 추출기법과 제안기법을 핸드 트래킹과 전체 몸 움직임 추적의 비교실험을 통하여 제안 기법의 안정성을 보였다. 제안 기법은 극심한 조명변화에 강건하게 동적 객체의 영역정보를 실시간 추출하였다.

  • PDF

An Experimental Study on Dynamic Properties of Concrete with Vibration-Mitigation Materials (제진재 혼입 콘크리트의 동적물성에 관한 실험적 연구)

  • Chung, Young-Soo;Park, Yong-Goo
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.261-270
    • /
    • 1999
  • In these days, construction activities have caused civil petitions associated with vibration-induced damages or nuisances. Therefore, it is strongly needed to develop a remedial technique to mitigate unfavorable effects. The objective of this experimental research is to investigate material and structural dynamic characteristics of vibration-controlled concretes which have been proportionally mixed with various vibration reducing material, such as latex, rubber powder, plastic resin, polystyrofoams and etc. Normal and high strength concrete specimens are also prepared for corresponding comparison. As part of the recycling research for obsolete rubber and plastic materials, 32 concrete cylinders and 10 concrete flexural beams have been made for material and structural dynamic properties, respectively. In accordance with the resonance test on concrete cylinders, it can be concluded that concrete with vibration-reducing material have relatively larger material damping ration than normal or high strength concrete. Styrofoam is determined to be very effective vibration-reducing mixtures. From the vibration test on 10 concrete flexural beams, meamwhile, of importance observations was that material damping ratio is very smaller than structural damping ratio of corresponding specimen. But further vibration test on more flexural beams should be strongly needed by varying support conditions.

Mechanical Performances of Boards Made from Carbonized Rice Husk and Sawdust: The Effect of Resin and Sawdust Addition Ratio (왕겨숯과 톱밥을 이용하여 제조한 보드의 역학적 성능: 수지 및 톱밥첨가량의 영향)

  • HWANG, Jung-Woo;OH, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.696-709
    • /
    • 2020
  • A board was manufactured for each resin and sawdust addition using the chaff made by carbonizing the chaff charcoal, an agricultural by-product that emerge during the rice pounding process, and sawdust. And effects of the additions of resin and sawdust on coefficients of dynamic and static modulus of elasticity, modulus of rupture, as well as the relationship between the dynamic modulus of elasticity, statis modulus of elasticity, and modulus of rupture were investigated. As phenol resin addition of chaff charcoal-sawdust compound board increases to 10~25%, the bending performance has increased. This suggests that resin addition largely effects the bending performance. Although the bending performance was gradually increased with the increase in sawdust addition, since the coefficients of determination (R2) between the sawdust addition with the coefficients of dynamic, static modulus of elasticity, and modulus of rupture were 0.4012, 0.0809, and 0.1971, respectively. Thus, it showed a relatively lower correlation, and the effect of sawdust on bending performance was small. Since a high correlation was confirmed between dynamic and static modulus of elasticity, and modulus of rupture of chaff charcoal-sawdust compound board, it was confirmed that prediction of static modulus of elasticity and modulus of rupture can be made in a nondestructive way from the dynamic modulus of elasticity.

Determination of Proper Loading Speed for Deformation Strength Test of Asphalt Concretes (아스팔트 콘크리트 변형강도 시험에서의 적정 하중재하속도 선정 연구)

  • Cho, Byung-J.;Park, Tae-W.;Doh, Young-S.;Kim, Kwang-W.
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.225-234
    • /
    • 2008
  • This study was carried out to select proper loading speed for deformation strength ($S_D$) of asphalt mixtures. Kim test using loading head of diameter(40mm) with radius(10mm) was conducted to measure $S_D$ in different loading speed (10mm/min, 30mm/min, 50mm/min, 70mm/min) and wheel tracking test was also conducted. The regression analyses between the So values and WT results were carried out by loading speeds. Higher $S_D$ was observed as increasing loading speed. This means that loading speed is a high influencing factor on $S_D$. The loading speed of 30mm/min was found as an optimum for better correlation with WT results than any other speeds from the regression analysis between $S_D$ and wheel tracking test results. $S_D$ value measured at other loading speed than 30mm/min has to apply the conversion coefficients.

  • PDF

A Study on the Dynamic Ground Effect on Three-Dimensional Wings Using a Time Domain Panel Method (시간영역패널법을 사용한 3차원 날개의 동적지면효과 연구)

  • Han, Cheol-Heui;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.10-17
    • /
    • 2002
  • A study on the dynamic ground effect on three-dimensional wings is done using an indirect boundary element method(unsteady panel method). An integral equation is obtained by applying Green's theorem on all surfaces of the fluid domain. Constant strength dipole and source panels arc distributed on a wing's surface. The wake sheet is represented by constant strength dipoles. At each time step, a row of wake panels is assumed to be convected from the trailing edge of the wing. The tip vortex behind wings in dynamic ground effect moves outward. The amplitudes of the aerodynamic coefficients for the wings in dynamic ground effect are augmented much more comparing to the case in static ground effect.

The Estimation of Dynamic/Impact Strength Characteristics of High Tensile Steel by Dynamic Lethargy Coefficient (동적무기력계수에 의한 고장력강의 동적.충격강도 특성 평가)

  • 송준혁;박정민;채희창;강희용;양성모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.96-100
    • /
    • 2002
  • The purpose of this paper is presented a rational method of predicting dynamic/impact tensile strength of high tensile steel materials widely used fur structural material of automobiles. It is known that the ultimate strength is related with the loading speed and the Lethargy Coefficient from the tensile test. The Dynamic Lethargy Coefficient is proportional to the disorientation of the molecular structure and indicates the magnitude of defects resulting from the probability of breaking the bonds responsible for its strength. The coefficient is obtained from the simple tensile test such as failure time and stresses at fracture. These factors not only affect the static strength but also have a great influence on the dynamic/impact characteristics of the joist and the adjacent structures. This strength is used to analyze the failure life prediction of mechanical system by virtue of its material fracture. The impact tensile test is performed to evaluate the life parameters due to loading speed with the proposed method. Also the evaluation of the dynamic/impact effect on the material tensile strength characteristics is compared with the result of Campbell-Cooper equation to verify the proposed method.

Experimental Assessment of Dynamic Strength of Membrane Type LNG Carrier Insulation System (멤브레인 LNG선 방열시스템 동적강도 실험적 특성평가)

  • Lee, Jun-Hwan;Choi, Woo-Chul;Kim, Myung-Hyun;Kim, Wha-Soo;Noh, Byeong-Jae;Choe, Ick-Hung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.296-304
    • /
    • 2007
  • The objective of this paper is to investigate the dynamic strength characteristics of LNG carriers cargo containment system under impact loads experimentally. The material properties were experimentally obtained for individual components of MARK III insulation system. A series of impact tests was performed using a custom-built drop experiment facility as varying heights and weights of the drop object. Crack initiation and propagation were measured during the cyclic dry drop experiment. The quantitative relationship between impact load and crack initiation as well as the cycle number and crack propagation were reported.