• 제목/요약/키워드: 동작 분할

검색결과 544건 처리시간 0.027초

SSM 클러스터링을 이용한 동작벡터의 분할 (Segmentation of Motion Vector Using Seeded Split-Merge Clustering)

  • 이동하;장석우;최형일
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.493-495
    • /
    • 2000
  • 동영상에서 동작물체 영역과 배경 영역을 추출하는 방법에는 크게 원본 영상들의 특징값을 이용하는 방법, 동작벡터 혹은 광류를 이용하는 방법, 그리고 동작벡터와 원본영상을 모두 이용하는 방법의 세가지가 있다. 이중 많이 사용되고 있는 동작벡터를 이용하는 방법에는 히스토그램을 이용하는 방법과 동작벡터의 특징값에 대한 클러스터링을 이용해 분할 하는 방법이 있는데. 이들 기존 방법은 몇가지 문제점을 가지고 있다. 전자는 구현이 간단하나 세부적인 영역분할이 어렵다는 문제점이 있고, 후자는 일반적으로 높은 계산 복잡도를 가지며 초기 클러스터 개수 선정에 문제를 지니고 있다. 본 논문에서는 낮은 계산 복잡도를 가지며 클러스터 할당과 병합된 클러스터 중심 계산에 있어 보다 적응적인 Seeded Split-Merge 클러스터링 방법을 제안한다.

  • PDF

계층적 프레임 탐색을 이용한 MPEG 비디오 분할 (MPEG Video Segmentation using Hierarchical Frame Search)

  • 김주민;최영우;정규식
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.215-218
    • /
    • 2000
  • 디지털 비디오 데이터를 효율적으로 브라우징 하는데 필요한 비디오 분할에 관한 연구가 활발하게 진행되고 있다. 본 연구에서는 비디오 데이터를 Shot단위로 분할하고, Shot내부에서 카메라 동작과 객체 움직임 분석을 이용한 sub-shot으로 분할하고자 한다. 연구 방법으로는 I-frame의 DC 영상을 이용하여 픽쳐그룹을 Shot(장면이 바뀐 경우), Move(카메라 동작,객체움직임), Static(영상의 변화가 거의 없는 경우)로 세분화하고 해당 픽쳐 그룹의 P, B-frame을 검사하여 정확한 컷 발생 위치, 디졸브, 카메라동작, 객체 움직임을 검출하게 된다. 픽쳐그룹 분류에서 정확성을 높이기 위해 계층적 신경망과 다중 특징을 이용한다. 정확한 컷 발생위치 검출하기 위해서 P, B프레임의 메크로블럭 타입을 이용한 통계적 방법을 이용하고, 디졸브, 카메라 동작, 객체 움직임을 검출하기 위해서 P, B-frame의 메크로블럭 타입과 움직임 벡터를 이용한 신경망으로 검출한다. 본 연구에서는 계층적 탐색을 이용하여 시간을 단축할 수 있고, 계층적 신경망과 다중 특징을 이용하여 픽쳐 그룹을 세분화 할 수 있고, 메크로 블록 타입과 통계적 방법을 이용하여 정확한 컷 검출을 할수 있고, 신경망을 이용하여 디졸브, 카메라 동작, 객체움직임을 검출 할 수 있음을 확인한다.

  • PDF

칼만 필터를 이용한 다중 차량 추적 알고리즘 (Multiple Vehicle Tracking Algorithm Using Kalman Filters)

  • 이철헌;김형태;설성욱;남기곤;이장명
    • 전자공학회논문지S
    • /
    • 제36S권3호
    • /
    • pp.89-96
    • /
    • 1999
  • 본 논문에서는 빠른 수행 속도를 가지고 여러 대의 차량을 동시에 추적할 수 있는 다중 차량 추적 알고리즘을 제안한다. 이러한 작업은 연속 영상으로부터 움직이는 물체의 동작 정보를 구하는 동작 분할(motion segmentation)단계와 칼만 필터(Kalman filter)를 이용해서 물체의 위치를 예측하는 동작 예측(motion estimation)단계로 나누어진다. 제안된 알고리즘은 아핀 동작 모델(Affine motion model)을 적용하여 동작 정보를 근사화함으로써 두 개의 선형 칼만 필터를 사용하고, 칼만 필터에서 예측된 위치 정보를 동작 분할 과정에 사용하여 빠른 추적이 이루어지도록 하였다. 또한, 다중 물체 추적 시 중요한 데이터 연결 문제(data association problem)를 해결하기 위해서 패턴 인식 방법을 도입하였다. 제안된 알고리즘을 고속 도로 영상에 대해 적용했을 때, 빠르고 정확한 다중 차량 추적이 이루어짐을 실험 결과를 통해 보였다.

  • PDF

SVM을 이용한 동적 동작인식: 체감형 동화에 적용 (Dynamic Gesture Recognition using SVM and its Application to an Interactive Storybook)

  • 이경미
    • 한국콘텐츠학회논문지
    • /
    • 제13권4호
    • /
    • pp.64-72
    • /
    • 2013
  • 본 연구에서는 다차원의 데이터 인식에 유리한 SVM을 이용한 동적 동작인식 알고리즘을 제안한다. 우선, Kinect 비디오 프레임에서 동작의 시작과 끝을 찾아 의미있는 동작 프레임을 분할하고, 프레임 수를 동일하게 정규화시킨다. 정규화된 프레임에서 인체 모델에 기반한 인체 부위의 위치와 부위 사이의 관계를 이용한 동작 특징을 추출하여 동작인식을 수행한다. 동작인식기인 C-SVM는 각 동작에 대해 positive 데이터와 negative 데이터로 구성된 학습 데이터로 학습된다. 최종 동작 선정은 각 C-SVM의 결과값 중 가장 큰 값을 갖는 동작으로 한다. 제안하는 동작인식 알고리즘은 플래시 구연동화에서 더 나아가 유아가 능동적으로 구연동화에 참여할 수 있도록 고안된 체감형 동화 콘텐츠에 동작 인터페이스로 적용되었다.

3차원 손 특징을 이용한 손 동작 인식에 관한 연구 (A study on hand gesture recognition using 3D hand feature)

  • 배철수
    • 한국정보통신학회논문지
    • /
    • 제10권4호
    • /
    • pp.674-679
    • /
    • 2006
  • 본 논문에서는 3차원 손 특징 데이터를 이용한 동작 인식 시스템을 제안하고자 한다. 제안된 시스템은 3차원 센서에 의해 조밀한 범위의 영상을 생성하여 손 동작에 대한 3차원 특징을 추출하여 손 동작을 분류한다. 또한 다양한 조명과 배경하에서의 손을 견실하게 분할하고 색상 정보와 상관이 없어 수화와 같은 복잡한 손 동작에 대해서도 견실한 인식능력을 나타낼 수가 있다. 제안된 방법의 전체적인 순서는 3차원 영상 획득, 팔 분할, 손과 팔목 분할, 손 자세 추정, 3차원 특징 추출, 그리고 동작 분류로 구성되어 있고, 수화 자세에 대한 인식 실험으로 제안된 시스템의 효율성을 입증하였다.

비디오 게임 인터페이스를 위한 인식 기반 제스처 분할 (Recognition-Based Gesture Spotting for Video Game Interface)

  • 한은정;강현;정기철
    • 한국멀티미디어학회논문지
    • /
    • 제8권9호
    • /
    • pp.1177-1186
    • /
    • 2005
  • 키보드나 조이스틱 대신 카메라를 통해 입력되는 사용자의 제스처를 이용하는 시각 기반 비디오 게임 인터페이스를 사용할 때 자연스러운 동작을 허용하기 위해서는, 연속 제스처를 인식할 수 있고 사용자의 의미없는 동작이 허용되어야 한다. 본 논문에서는 비디오 게임 인터페이스를 위한 인식과 분할을 결합한 제스처 인식 방법을 제안하며, 이는 주어진 연속 영상에서 의미있는 동작을 인식함과 동시에 의미없는 동작을 구별하는 방법이다. 제안된 방법을 사용자의 상체 제스처를 게임의 명령어로 사용하는 1인칭 액션 게임인 Quke II 게임에 적용한 결과, 연속 제스처에 대해 평균 $93.36\%$의 분할 결과로써 비디오 게임 인터페이스에서 유용한 성능을 낼 수 있음을 보였다.

  • PDF

동작인식을 위한 배경 분할 및 특징점 추출 방법 (A Background Segmentation and Feature Point Extraction Method of Human Motion Recognition)

  • 유휘종;김태영
    • 한국게임학회 논문지
    • /
    • 제11권2호
    • /
    • pp.161-166
    • /
    • 2011
  • 본 논문에서는 동작인식 위한 정확한 배경 분할 및 특징점 추출 방법을 제안한다. 배경 분할 과정에서는 먼저, HSV 입력 이미지를 RGB 색상 공간에서 HSV 색상 공간으로 변환한 뒤, H와 S 값에 대한 두 개의 임계치를 사용하여 살색 영역을 분할, 프레임간의 차영상을 이용하여 움직임이 있는 영역을 추출한다. 차영상에서 발생하는 잔상 영역을 제거하기 위하여 헤시안 어파인 영역 검출기를 적용하고, 잡음이 제거된 차 영상과 살색 영역의 이진화 영상을 이용하여 사람의 동작이 나타나는 영역을 분할한다. 특징점 추출 과정은 전체 영상을 블록 단위로 나눠서 각 블록 안에서 분할된 영상에 포함되는 픽셀들의 중점을 구하여 특징점을 추출한다. 실험결과 복잡한 환경에서도 정확한 배경 분할과 사용자 동작을 대표하는 특징점 추출이 약 12 fps로 가능함을 알 수 있었다.

비동기식 시스템을 위한 메모리의 동작 완료 신호 생성 회로 (A Design Method of a Completion Signal Generation Circuit of Memory for Asynchronous System)

  • 서준영;이제훈;조경록
    • 대한전자공학회논문지SD
    • /
    • 제41권10호
    • /
    • pp.105-113
    • /
    • 2004
  • 본 논문은 B-I (delay insensitive) 모델을 사용하는 비동기 프로세서의 메모리 동작 완료 신호 생성 회로를 제안한다. 제안된 설계 방법은 더미셀과 완료 신호 생성 회로를 이용하여 메모리의 읽기 및 쓰기 동작의 완료 신호를 생성한다. 비트라인과 메모리 셀의 지연을 고려하여 메모리를 지수적 블록 크기로 나누어 최소의 완료 신호 회로를 추가하여 D-I 모델로 동작하는 메모리를 설계하였다. 각 구역의 크기가 지수적으로 증가하도록 메모리를 분할하는 제안된 분할 알고리즘은 기존의 동일한 크기를 갖는 구역들로 메모리를 분할하는 방법에 비해 약 40% 정도 동작 지연을 개선하였다.

동작주파스 변화에 의한 초음파 영상의 깊이분해능 개선 (The enhancement of depth resolution for acoustic image using variation of the frequency)

  • 오동인;김현;전계석
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 1호
    • /
    • pp.395-398
    • /
    • 1999
  • 본 연구에서는 초음파현미경에서 다중의 동작주파스를 사용하여 얻어진 영상을 합성하여 깊이분해능이 개선된 초음파영상을 복원하는 방법을 연구하였다. 실험을 위하여 중심주파수가 5MHz이고 비대역폭이 $35\%$인 초음파변환기를 사용하여 초음파현미경을 구성하였다. 시편은 알루미늄을 이용하여 표면에 깊이가 $100{\mu}m$이고 지름이 2mm인 원형결함을 제작하였다. 실험결과, 동작주파수가 5MHz인 단일 주파수를 사용하여 얻어진 영상에서 결함이 존재하는 면과 그렇지 않은 면에 대한 콘트라스트가 0.098로 나타났다. 반면에 동작주파수를 $4.4MHz\~5.6MHz$ 범위에서 200kHz씩 변화시키면서 획득한 데이터를 합성하여 얻어진 영상에서 결함이 존재하는 면과 그러하지 않은 면에 대한 영상 콘트라스트가 0.398로 나타났다. 따라서 초음파현미경에서 다중의 동작주파수를 사용한 경우, 피사체의 깊이 변화에 대한 영상의 콘트라스트가 단일주파수를 사용한 경우에 비하여 개선되어 나타났으며 깊이분해능이 향상되었다. 앞으로의 과제는 초음파현미경에서 음향렌즈의 집속도 변화에 대한 적절한 동작주파수의 동작범위와 영상의 분해능과의 관계에 대한 연구가 계속되어져야 한다고 본다.

  • PDF

편측적 EEG Coherence 에 의한 손동작 예측에 관한 연구 (A Research on Prediction of Hand Movement by EEG Coherence at Lateral Hemisphere Area)

  • 우진철;황민철;김종화;김치중;김지혜;김용우
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.330-334
    • /
    • 2009
  • 본 연구는 뇌의 편측 영역 에서의 EEG(Electroencephalography) coherence 로 손동작 의도를 예측하고자 하는 연구이다. 손 동작 예측을 위한 실험에 신체에 이상이 없는 6 명의 피실험자가 참여 하였다. 실험은 데이터 트레이닝 6 분과 동작 의도 판단 6 분으로 진행되었으며 무작위 순서로 손 동작을 지시한 후 편측적 영역 5 개 지점의 EEG 와 동작 시점을 알기 위한 오른손 EMG(Electromyography)를 측정하였다. 측정된 EEG 데이터를 분석하기 위해 주파수 별 Alpha 와 Beta 를 분류하였고 EMG 신호를 기준으로 동작과 휴식으로 분류된 Alpha 와 Beta 데이터를 5 개의 측정 영역별 Coherence 분석을 하였다. 그 결과 동작과 휴식을 구분할 수 있는 통계적으로 유효한 EEG Coherence 영역을 통하여 동작 판단을 할 수 있음을 확인하였다.

  • PDF