• Title/Summary/Keyword: 동작 분할

Search Result 544, Processing Time 0.024 seconds

Segmentation of Motion Vector Using Seeded Split-Merge Clustering (SSM 클러스터링을 이용한 동작벡터의 분할)

  • 이동하;장석우;최형일
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.493-495
    • /
    • 2000
  • 동영상에서 동작물체 영역과 배경 영역을 추출하는 방법에는 크게 원본 영상들의 특징값을 이용하는 방법, 동작벡터 혹은 광류를 이용하는 방법, 그리고 동작벡터와 원본영상을 모두 이용하는 방법의 세가지가 있다. 이중 많이 사용되고 있는 동작벡터를 이용하는 방법에는 히스토그램을 이용하는 방법과 동작벡터의 특징값에 대한 클러스터링을 이용해 분할 하는 방법이 있는데. 이들 기존 방법은 몇가지 문제점을 가지고 있다. 전자는 구현이 간단하나 세부적인 영역분할이 어렵다는 문제점이 있고, 후자는 일반적으로 높은 계산 복잡도를 가지며 초기 클러스터 개수 선정에 문제를 지니고 있다. 본 논문에서는 낮은 계산 복잡도를 가지며 클러스터 할당과 병합된 클러스터 중심 계산에 있어 보다 적응적인 Seeded Split-Merge 클러스터링 방법을 제안한다.

  • PDF

MPEG Video Segmentation using Hierarchical Frame Search (계층적 프레임 탐색을 이용한 MPEG 비디오 분할)

  • 김주민;최영우;정규식
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.215-218
    • /
    • 2000
  • 디지털 비디오 데이터를 효율적으로 브라우징 하는데 필요한 비디오 분할에 관한 연구가 활발하게 진행되고 있다. 본 연구에서는 비디오 데이터를 Shot단위로 분할하고, Shot내부에서 카메라 동작과 객체 움직임 분석을 이용한 sub-shot으로 분할하고자 한다. 연구 방법으로는 I-frame의 DC 영상을 이용하여 픽쳐그룹을 Shot(장면이 바뀐 경우), Move(카메라 동작,객체움직임), Static(영상의 변화가 거의 없는 경우)로 세분화하고 해당 픽쳐 그룹의 P, B-frame을 검사하여 정확한 컷 발생 위치, 디졸브, 카메라동작, 객체 움직임을 검출하게 된다. 픽쳐그룹 분류에서 정확성을 높이기 위해 계층적 신경망과 다중 특징을 이용한다. 정확한 컷 발생위치 검출하기 위해서 P, B프레임의 메크로블럭 타입을 이용한 통계적 방법을 이용하고, 디졸브, 카메라 동작, 객체 움직임을 검출하기 위해서 P, B-frame의 메크로블럭 타입과 움직임 벡터를 이용한 신경망으로 검출한다. 본 연구에서는 계층적 탐색을 이용하여 시간을 단축할 수 있고, 계층적 신경망과 다중 특징을 이용하여 픽쳐 그룹을 세분화 할 수 있고, 메크로 블록 타입과 통계적 방법을 이용하여 정확한 컷 검출을 할수 있고, 신경망을 이용하여 디졸브, 카메라 동작, 객체움직임을 검출 할 수 있음을 확인한다.

  • PDF

Multiple Vehicle Tracking Algorithm Using Kalman Filters (칼만 필터를 이용한 다중 차량 추적 알고리즘)

  • 이철헌;김형태;설성욱;남기곤;이장명
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.3
    • /
    • pp.89-96
    • /
    • 1999
  • 본 논문에서는 빠른 수행 속도를 가지고 여러 대의 차량을 동시에 추적할 수 있는 다중 차량 추적 알고리즘을 제안한다. 이러한 작업은 연속 영상으로부터 움직이는 물체의 동작 정보를 구하는 동작 분할(motion segmentation)단계와 칼만 필터(Kalman filter)를 이용해서 물체의 위치를 예측하는 동작 예측(motion estimation)단계로 나누어진다. 제안된 알고리즘은 아핀 동작 모델(Affine motion model)을 적용하여 동작 정보를 근사화함으로써 두 개의 선형 칼만 필터를 사용하고, 칼만 필터에서 예측된 위치 정보를 동작 분할 과정에 사용하여 빠른 추적이 이루어지도록 하였다. 또한, 다중 물체 추적 시 중요한 데이터 연결 문제(data association problem)를 해결하기 위해서 패턴 인식 방법을 도입하였다. 제안된 알고리즘을 고속 도로 영상에 대해 적용했을 때, 빠르고 정확한 다중 차량 추적이 이루어짐을 실험 결과를 통해 보였다.

  • PDF

Dynamic Gesture Recognition using SVM and its Application to an Interactive Storybook (SVM을 이용한 동적 동작인식: 체감형 동화에 적용)

  • Lee, Kyoung-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.4
    • /
    • pp.64-72
    • /
    • 2013
  • This paper proposes a dynamic gesture recognition algorithm using SVM(Support Vector Machine) which is suitable for multi-dimension classification. First of all, the proposed algorithm locates the beginning and end of the gestures on the video frames at the Kinect camera, spots meaningful gesture frames, and normalizes the number of frames. Then, for gesture recognition, the algorithm extracts gesture features using body parts' positions and relations among the parts based on the human model from the normalized frames. C-SVM for each dynamic gesture is trained using training data which consists of positive data and negative data. The final gesture is chosen with the largest value of C-SVM values. The proposed gesture recognition algorithm can be applied to the interactive storybook as gesture interface.

A study on hand gesture recognition using 3D hand feature (3차원 손 특징을 이용한 손 동작 인식에 관한 연구)

  • Bae Cheol-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.674-679
    • /
    • 2006
  • In this paper a gesture recognition system using 3D feature data is described. The system relies on a novel 3D sensor that generates a dense range mage of the scene. The main novelty of the proposed system, with respect to other 3D gesture recognition techniques, is the capability for robust recognition of complex hand postures such as those encountered in sign language alphabets. This is achieved by explicitly employing 3D hand features. Moreover, the proposed approach does not rely on colour information, and guarantees robust segmentation of the hand under various illumination conditions, and content of the scene. Several novel 3D image analysis algorithms are presented covering the complete processing chain: 3D image acquisition, arm segmentation, hand -forearm segmentation, hand pose estimation, 3D feature extraction, and gesture classification. The proposed system is tested in an application scenario involving the recognition of sign-language postures.

Recognition-Based Gesture Spotting for Video Game Interface (비디오 게임 인터페이스를 위한 인식 기반 제스처 분할)

  • Han, Eun-Jung;Kang, Hyun;Jung, Kee-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.9
    • /
    • pp.1177-1186
    • /
    • 2005
  • In vision-based interfaces for video games, gestures are used as commands of the games instead of pressing down a keyboard or a mouse. In these Interfaces, unintentional movements and continuous gestures have to be permitted to give a user more natural interface. For this problem, this paper proposes a novel gesture spotting method that combines spotting with recognition. It recognizes the meaningful movements concurrently while separating unintentional movements from a given image sequence. We applied our method to the recognition of the upper-body gestures for interfacing between a video game (Quake II) and its user. Experimental results show that the proposed method is on average $93.36\%$ in spotting gestures from continuous gestures, confirming its potential for a gesture-based interface for computer games.

  • PDF

A Background Segmentation and Feature Point Extraction Method of Human Motion Recognition (동작인식을 위한 배경 분할 및 특징점 추출 방법)

  • You, Hwi-Jong;Kim, Tae-Young
    • Journal of Korea Game Society
    • /
    • v.11 no.2
    • /
    • pp.161-166
    • /
    • 2011
  • In this paper, we propose a novel background segmentation and feature point extraction method of a human motion for the augmented reality game. First, our method transforms input image from RGB color space to HSV color space, then segments a skin colored area using double threshold of H, S value. And it also segments a moving area using the time difference images and then removes the noise of the area using the Hessian affine region detector. The skin colored area with the moving area is segmented as a human motion. Next, the feature points for the human motion are extracted by calculating the center point for each block in the previously obtained image. The experiments on various input images show that our method is capable of correct background segmentation and feature points extraction 12 frames per second.

A Design Method of a Completion Signal Generation Circuit of Memory for Asynchronous System (비동기식 시스템을 위한 메모리의 동작 완료 신호 생성 회로)

  • 서준영;이제훈;조경록
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.10
    • /
    • pp.105-113
    • /
    • 2004
  • This paper presents a design method for an asynchronous memory with a completion signal generation circuit meeting D-I model. The proposed design method is to generates a completion signal with dummy cell and a completion signal generation circuit to indicate completion of the required read or write operation to the processor. Dividing a memory exponentially to consider delay of a bit-line and a memory cell makes memory operates as a D-I model with minimum addition of redundant circuit. The proposed memory partitioning algorithm that divides entire memory into the several partitions with a exponentially increased size reduces the memory access delay by 40% compared with a conventional partitioning method to the same size.

The enhancement of depth resolution for acoustic image using variation of the frequency (동작주파스 변화에 의한 초음파 영상의 깊이분해능 개선)

  • Oh Dong-In;Kim Hyun;Jun Kye-Suk
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.395-398
    • /
    • 1999
  • 본 연구에서는 초음파현미경에서 다중의 동작주파스를 사용하여 얻어진 영상을 합성하여 깊이분해능이 개선된 초음파영상을 복원하는 방법을 연구하였다. 실험을 위하여 중심주파수가 5MHz이고 비대역폭이 $35\%$인 초음파변환기를 사용하여 초음파현미경을 구성하였다. 시편은 알루미늄을 이용하여 표면에 깊이가 $100{\mu}m$이고 지름이 2mm인 원형결함을 제작하였다. 실험결과, 동작주파수가 5MHz인 단일 주파수를 사용하여 얻어진 영상에서 결함이 존재하는 면과 그렇지 않은 면에 대한 콘트라스트가 0.098로 나타났다. 반면에 동작주파수를 $4.4MHz\~5.6MHz$ 범위에서 200kHz씩 변화시키면서 획득한 데이터를 합성하여 얻어진 영상에서 결함이 존재하는 면과 그러하지 않은 면에 대한 영상 콘트라스트가 0.398로 나타났다. 따라서 초음파현미경에서 다중의 동작주파수를 사용한 경우, 피사체의 깊이 변화에 대한 영상의 콘트라스트가 단일주파수를 사용한 경우에 비하여 개선되어 나타났으며 깊이분해능이 향상되었다. 앞으로의 과제는 초음파현미경에서 음향렌즈의 집속도 변화에 대한 적절한 동작주파수의 동작범위와 영상의 분해능과의 관계에 대한 연구가 계속되어져야 한다고 본다.

  • PDF

A Research on Prediction of Hand Movement by EEG Coherence at Lateral Hemisphere Area (편측적 EEG Coherence 에 의한 손동작 예측에 관한 연구)

  • Woo, Jin-Cheol;Whang, Min-Cheol;Kim, Jong-Wha;Kim, Chi-Jung;Kim, Ji-Hye;Kim, Young-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.330-334
    • /
    • 2009
  • 본 연구는 뇌의 편측 영역 에서의 EEG(Electroencephalography) coherence 로 손동작 의도를 예측하고자 하는 연구이다. 손 동작 예측을 위한 실험에 신체에 이상이 없는 6 명의 피실험자가 참여 하였다. 실험은 데이터 트레이닝 6 분과 동작 의도 판단 6 분으로 진행되었으며 무작위 순서로 손 동작을 지시한 후 편측적 영역 5 개 지점의 EEG 와 동작 시점을 알기 위한 오른손 EMG(Electromyography)를 측정하였다. 측정된 EEG 데이터를 분석하기 위해 주파수 별 Alpha 와 Beta 를 분류하였고 EMG 신호를 기준으로 동작과 휴식으로 분류된 Alpha 와 Beta 데이터를 5 개의 측정 영역별 Coherence 분석을 하였다. 그 결과 동작과 휴식을 구분할 수 있는 통계적으로 유효한 EEG Coherence 영역을 통하여 동작 판단을 할 수 있음을 확인하였다.

  • PDF