Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.493-495
/
2000
동영상에서 동작물체 영역과 배경 영역을 추출하는 방법에는 크게 원본 영상들의 특징값을 이용하는 방법, 동작벡터 혹은 광류를 이용하는 방법, 그리고 동작벡터와 원본영상을 모두 이용하는 방법의 세가지가 있다. 이중 많이 사용되고 있는 동작벡터를 이용하는 방법에는 히스토그램을 이용하는 방법과 동작벡터의 특징값에 대한 클러스터링을 이용해 분할 하는 방법이 있는데. 이들 기존 방법은 몇가지 문제점을 가지고 있다. 전자는 구현이 간단하나 세부적인 영역분할이 어렵다는 문제점이 있고, 후자는 일반적으로 높은 계산 복잡도를 가지며 초기 클러스터 개수 선정에 문제를 지니고 있다. 본 논문에서는 낮은 계산 복잡도를 가지며 클러스터 할당과 병합된 클러스터 중심 계산에 있어 보다 적응적인 Seeded Split-Merge 클러스터링 방법을 제안한다.
디지털 비디오 데이터를 효율적으로 브라우징 하는데 필요한 비디오 분할에 관한 연구가 활발하게 진행되고 있다. 본 연구에서는 비디오 데이터를 Shot단위로 분할하고, Shot내부에서 카메라 동작과 객체 움직임 분석을 이용한 sub-shot으로 분할하고자 한다. 연구 방법으로는 I-frame의 DC 영상을 이용하여 픽쳐그룹을 Shot(장면이 바뀐 경우), Move(카메라 동작,객체움직임), Static(영상의 변화가 거의 없는 경우)로 세분화하고 해당 픽쳐 그룹의 P, B-frame을 검사하여 정확한 컷 발생 위치, 디졸브, 카메라동작, 객체 움직임을 검출하게 된다. 픽쳐그룹 분류에서 정확성을 높이기 위해 계층적 신경망과 다중 특징을 이용한다. 정확한 컷 발생위치 검출하기 위해서 P, B프레임의 메크로블럭 타입을 이용한 통계적 방법을 이용하고, 디졸브, 카메라 동작, 객체 움직임을 검출하기 위해서 P, B-frame의 메크로블럭 타입과 움직임 벡터를 이용한 신경망으로 검출한다. 본 연구에서는 계층적 탐색을 이용하여 시간을 단축할 수 있고, 계층적 신경망과 다중 특징을 이용하여 픽쳐 그룹을 세분화 할 수 있고, 메크로 블록 타입과 통계적 방법을 이용하여 정확한 컷 검출을 할수 있고, 신경망을 이용하여 디졸브, 카메라 동작, 객체움직임을 검출 할 수 있음을 확인한다.
Journal of the Korean Institute of Telematics and Electronics S
/
v.36S
no.3
/
pp.89-96
/
1999
본 논문에서는 빠른 수행 속도를 가지고 여러 대의 차량을 동시에 추적할 수 있는 다중 차량 추적 알고리즘을 제안한다. 이러한 작업은 연속 영상으로부터 움직이는 물체의 동작 정보를 구하는 동작 분할(motion segmentation)단계와 칼만 필터(Kalman filter)를 이용해서 물체의 위치를 예측하는 동작 예측(motion estimation)단계로 나누어진다. 제안된 알고리즘은 아핀 동작 모델(Affine motion model)을 적용하여 동작 정보를 근사화함으로써 두 개의 선형 칼만 필터를 사용하고, 칼만 필터에서 예측된 위치 정보를 동작 분할 과정에 사용하여 빠른 추적이 이루어지도록 하였다. 또한, 다중 물체 추적 시 중요한 데이터 연결 문제(data association problem)를 해결하기 위해서 패턴 인식 방법을 도입하였다. 제안된 알고리즘을 고속 도로 영상에 대해 적용했을 때, 빠르고 정확한 다중 차량 추적이 이루어짐을 실험 결과를 통해 보였다.
This paper proposes a dynamic gesture recognition algorithm using SVM(Support Vector Machine) which is suitable for multi-dimension classification. First of all, the proposed algorithm locates the beginning and end of the gestures on the video frames at the Kinect camera, spots meaningful gesture frames, and normalizes the number of frames. Then, for gesture recognition, the algorithm extracts gesture features using body parts' positions and relations among the parts based on the human model from the normalized frames. C-SVM for each dynamic gesture is trained using training data which consists of positive data and negative data. The final gesture is chosen with the largest value of C-SVM values. The proposed gesture recognition algorithm can be applied to the interactive storybook as gesture interface.
Journal of the Korea Institute of Information and Communication Engineering
/
v.10
no.4
/
pp.674-679
/
2006
In this paper a gesture recognition system using 3D feature data is described. The system relies on a novel 3D sensor that generates a dense range mage of the scene. The main novelty of the proposed system, with respect to other 3D gesture recognition techniques, is the capability for robust recognition of complex hand postures such as those encountered in sign language alphabets. This is achieved by explicitly employing 3D hand features. Moreover, the proposed approach does not rely on colour information, and guarantees robust segmentation of the hand under various illumination conditions, and content of the scene. Several novel 3D image analysis algorithms are presented covering the complete processing chain: 3D image acquisition, arm segmentation, hand -forearm segmentation, hand pose estimation, 3D feature extraction, and gesture classification. The proposed system is tested in an application scenario involving the recognition of sign-language postures.
In vision-based interfaces for video games, gestures are used as commands of the games instead of pressing down a keyboard or a mouse. In these Interfaces, unintentional movements and continuous gestures have to be permitted to give a user more natural interface. For this problem, this paper proposes a novel gesture spotting method that combines spotting with recognition. It recognizes the meaningful movements concurrently while separating unintentional movements from a given image sequence. We applied our method to the recognition of the upper-body gestures for interfacing between a video game (Quake II) and its user. Experimental results show that the proposed method is on average $93.36\%$ in spotting gestures from continuous gestures, confirming its potential for a gesture-based interface for computer games.
In this paper, we propose a novel background segmentation and feature point extraction method of a human motion for the augmented reality game. First, our method transforms input image from RGB color space to HSV color space, then segments a skin colored area using double threshold of H, S value. And it also segments a moving area using the time difference images and then removes the noise of the area using the Hessian affine region detector. The skin colored area with the moving area is segmented as a human motion. Next, the feature points for the human motion are extracted by calculating the center point for each block in the previously obtained image. The experiments on various input images show that our method is capable of correct background segmentation and feature points extraction 12 frames per second.
Journal of the Institute of Electronics Engineers of Korea SD
/
v.41
no.10
/
pp.105-113
/
2004
This paper presents a design method for an asynchronous memory with a completion signal generation circuit meeting D-I model. The proposed design method is to generates a completion signal with dummy cell and a completion signal generation circuit to indicate completion of the required read or write operation to the processor. Dividing a memory exponentially to consider delay of a bit-line and a memory cell makes memory operates as a D-I model with minimum addition of redundant circuit. The proposed memory partitioning algorithm that divides entire memory into the several partitions with a exponentially increased size reduces the memory access delay by 40% compared with a conventional partitioning method to the same size.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.395-398
/
1999
본 연구에서는 초음파현미경에서 다중의 동작주파스를 사용하여 얻어진 영상을 합성하여 깊이분해능이 개선된 초음파영상을 복원하는 방법을 연구하였다. 실험을 위하여 중심주파수가 5MHz이고 비대역폭이 $35\%$인 초음파변환기를 사용하여 초음파현미경을 구성하였다. 시편은 알루미늄을 이용하여 표면에 깊이가 $100{\mu}m$이고 지름이 2mm인 원형결함을 제작하였다. 실험결과, 동작주파수가 5MHz인 단일 주파수를 사용하여 얻어진 영상에서 결함이 존재하는 면과 그렇지 않은 면에 대한 콘트라스트가 0.098로 나타났다. 반면에 동작주파수를 $4.4MHz\~5.6MHz$ 범위에서 200kHz씩 변화시키면서 획득한 데이터를 합성하여 얻어진 영상에서 결함이 존재하는 면과 그러하지 않은 면에 대한 영상 콘트라스트가 0.398로 나타났다. 따라서 초음파현미경에서 다중의 동작주파수를 사용한 경우, 피사체의 깊이 변화에 대한 영상의 콘트라스트가 단일주파수를 사용한 경우에 비하여 개선되어 나타났으며 깊이분해능이 향상되었다. 앞으로의 과제는 초음파현미경에서 음향렌즈의 집속도 변화에 대한 적절한 동작주파수의 동작범위와 영상의 분해능과의 관계에 대한 연구가 계속되어져야 한다고 본다.
본 연구는 뇌의 편측 영역 에서의 EEG(Electroencephalography) coherence 로 손동작 의도를 예측하고자 하는 연구이다. 손 동작 예측을 위한 실험에 신체에 이상이 없는 6 명의 피실험자가 참여 하였다. 실험은 데이터 트레이닝 6 분과 동작 의도 판단 6 분으로 진행되었으며 무작위 순서로 손 동작을 지시한 후 편측적 영역 5 개 지점의 EEG 와 동작 시점을 알기 위한 오른손 EMG(Electromyography)를 측정하였다. 측정된 EEG 데이터를 분석하기 위해 주파수 별 Alpha 와 Beta 를 분류하였고 EMG 신호를 기준으로 동작과 휴식으로 분류된 Alpha 와 Beta 데이터를 5 개의 측정 영역별 Coherence 분석을 하였다. 그 결과 동작과 휴식을 구분할 수 있는 통계적으로 유효한 EEG Coherence 영역을 통하여 동작 판단을 할 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.