• Title/Summary/Keyword: 동작 분류

Search Result 510, Processing Time 0.024 seconds

Performance Analysis of Exercise Gesture-Recognition Using Convolutional Block Attention Module (합성 블록 어텐션 모듈을 이용한 운동 동작 인식 성능 분석)

  • Kyeong, Chanuk;Jung, Wooyong;Seon, Joonho;Sun, Young-Ghyu;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.155-161
    • /
    • 2021
  • Gesture recognition analytics through a camera in real time have been widely studied in recent years. Since a small number of features from human joints are extracted, low accuracy of classifying models is get in conventional gesture recognition studies. In this paper, CBAM (Convolutional Block Attention Module) with high accuracy for classifying images is proposed as a classification model and algorithm calculating the angle of joints depending on actions is presented to solve the issues. Employing five exercise gestures images from the fitness posture images provided by AI Hub, the images are applied to the classification model. Important 8-joint angles information for classifying the exercise gestures is extracted from the images by using MediaPipe, a graph-based framework provided by Google. Setting the features as input of the classification model, the classification model is learned. From the simulation results, it is confirmed that the exercise gestures are classified with high accuracy in the proposed model.

A Method to resolve the Limit of Traffic Classification caused by Abnormal TCP Session (TCP 세션의 이상동작으로 인한 트래픽 분석 방법론의 한계와 해결 방안)

  • An, Hyeon-Min;Choe, Ji-Hyeok;Ham, Jae-Hyeon;Kim, Myeong-Seop
    • KNOM Review
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2012
  • 오늘날 네트워크 환경은 다양한 응용의 등장으로 트래픽이 복잡 다양해지고 있다. 이러한 상황 속에서 정확한 네트워크의 상태 파악을 위한 트래픽의 응용 별 분류에 대한 중요성은 더욱더 증가하고 있다. 최근 트래픽 플로우의 통계 정보를 이용한 트래픽의 응용 별 분류 방법론에 대한 연구가 활발히 진행되고 있다. 하지만 대부분의 연구들은 TCP 세션의 이상 동작에 대한 고려가 없어 분류결과의 오분류 및 미분류가 발생할 수 있다. 따라서 본 논문에서는 TCP 세션의 이상동작의 문제점을 지적하고 이를 개선하는 방법론을 제안한다. 제안된 방법론을 통계적 응용 트래픽 분류방법에 적용함으로써 그 타당성을 증명한다.

Pose Classification and Correction System for At-home Workouts (홈 트레이닝을 위한 운동 동작 분류 및 교정 시스템)

  • Kang, Jae Min;Park, Seongsu;Kim, Yun Soo;Gahm, Jin Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1183-1189
    • /
    • 2021
  • There have been recently an increasing number of people working out at home. However, many of them do not have face-to-face guidance from experts, so they cannot effectively correct their wrong pose. This may lead to strain and injury to those doing home training. To tackle this problem, this paper proposes a video data-based pose classification and correction system for home training. The proposed system classifies poses using the multi-layer perceptron and pose estimation model, and corrects poses based on joint angels estimated. A voting algorithm that considers the results of successive frames is applied to improve the performance of the pose classification model. Multi-layer perceptron model for post classification shows the highest accuracy with 0.9. In addition, it is shown that the proposed voting algorithm improves the accuracy to 0.93.

A Gaussian Mixture Model Based Pattern Classification Algorithm of Forearm Electromyogram (Gaussian Mixture Model 기반 전완 근전도 패턴 분류 알고리즘)

  • Song, Y.R.;Kim, S.J.;Jeong, E.C.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.95-101
    • /
    • 2011
  • In this paper, we propose the gaussian mixture model based pattern classification algorithm of forearm electromyogram. We define the motion of 1-degree of freedom as holding and unfolding hand considering a daily life for patient with prosthetic hand. For the extraction of precise features from the EMG signals, we use the difference absolute mean value(DAMV) and the mean absolute value(MAV) to consider amplitude characteristic of EMG signals. We also propose the D_DAMV and D_MAV in order to classify the amplitude characteristic of EMG signals more precisely. In this paper, we implemented a test targeting four adult male and identified the accuracy of EMG pattern classification of two motions which are holding and unfolding hand.

Robust Estimation of Camera Motion using Fuzzy Classification Method (퍼지 분류기법을 이용한 강건한 카메라 동작 추정)

  • Lee, Joong-Jae;Kim, Gye-Young;Choi, Hyung-Il
    • The KIPS Transactions:PartB
    • /
    • v.13B no.7 s.110
    • /
    • pp.671-678
    • /
    • 2006
  • In this paper, we propose a method for robustly estimating camera motion using fuzzy classification from the correspondences between two images. We use a RANSAC(Random Sample Consensus) algorithm to obtain accurate camera motion estimates in the presence of outliers. The drawback of RANSAC is that its performance depends on a prior knowledge of the outlier ratio. To resolve this problem the proposed method classifies samples into three classes(good sample set, bad sample set and vague sample set) using fuzzy classification. It then improves classification accuracy omitting outliers by iteratively sampling in only good sample set. The experimental results show that the proposed approach is very effective for computing a homography.

A Research on Prediction of Hand Movement by EEG Coherence at Lateral Hemisphere Area (편측적 EEG Coherence 에 의한 손동작 예측에 관한 연구)

  • Woo, Jin-Cheol;Whang, Min-Cheol;Kim, Jong-Wha;Kim, Chi-Jung;Kim, Ji-Hye;Kim, Young-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.330-334
    • /
    • 2009
  • 본 연구는 뇌의 편측 영역 에서의 EEG(Electroencephalography) coherence 로 손동작 의도를 예측하고자 하는 연구이다. 손 동작 예측을 위한 실험에 신체에 이상이 없는 6 명의 피실험자가 참여 하였다. 실험은 데이터 트레이닝 6 분과 동작 의도 판단 6 분으로 진행되었으며 무작위 순서로 손 동작을 지시한 후 편측적 영역 5 개 지점의 EEG 와 동작 시점을 알기 위한 오른손 EMG(Electromyography)를 측정하였다. 측정된 EEG 데이터를 분석하기 위해 주파수 별 Alpha 와 Beta 를 분류하였고 EMG 신호를 기준으로 동작과 휴식으로 분류된 Alpha 와 Beta 데이터를 5 개의 측정 영역별 Coherence 분석을 하였다. 그 결과 동작과 휴식을 구분할 수 있는 통계적으로 유효한 EEG Coherence 영역을 통하여 동작 판단을 할 수 있음을 확인하였다.

  • PDF

A Proposal of Motion Recognition-based Video Search System using Machine Learning (기계학습을 이용한 동작인식 동영상 검색시스템 제안)

  • Seo, Won-Seoung;Lee, Kang-Hee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.463-464
    • /
    • 2019
  • 본 논문은 기계학습을 기반으로 아두이노와 시리얼통신을 통한 사용자의 동작인식을 이용해 보다 간단하게 인터넷상의 원하는 동영상을 찾을 수 있는 검색시스템을 제작하고자 하였다. 이 검색시스템은 Python을 기반으로 SVM(Support Vector Machine)을 이용한 패턴 분류를 사용하였으며 이를 통해 사용자의 동작을 입력받아 문자를 예측 할 수 있다. 사용자는 이 검색시스템을 사용하기 위하여 우선 문자에 대한 사용자의 동작입력을 통해 학습 데이터 셋을 만들어야 하며 그것을 SVM을 이용하여 학습 모델과 식별자를 만들고, 만들어진 분류기를 통하여 동작인식을 바탕으로 문자의 결과를 예측 할 수 있다. 최종적으로 사용자의 동작인식을 거쳐 만들어진 문자열을 이용해 인터넷 동영상 사이트인 Youtube를 통해 웹 크롤링하여 문자열과 관련 있는 동영상을 찾아준다.

  • PDF

A Study on the Mal-Function of Protection Devices By Dividing Effect in Distribution System with New Energy Sources (신에너지전원이 연계된 배전계통에서 분류효과에 의한 보호기기 부동작에 관한 연구)

  • Park, Hyeon-Seok;Lee, Beom-Tae;Park, O-Seong;Rho, Dae-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.641-644
    • /
    • 2009
  • 일반적으로 신에너지전원(분산전원)이 설치되면, 연계지점 위치와 사고발생 위치에 따라 % 임피던스의 병렬화로 사고전류가 감소하는 분류효과가 발생할 수 있다. 이 때, 보호기기의 최소 정정치 이하로 사고전류가 감소하여 보호기기가 부 동작(동작해야 하는데 동작하지 않은 경우)하는 문제점이 발생한다. 본 연구에서는 현행 분산전원 연계기준 및 선로운영기준을 토대로 어떤 경우에 각 보호기기의 최소 정정치에 미달하는 지 사례 및 최악조건을 제시한다. 본 논문에서는 대칭좌표법을 이용하여 보호기기의 부 동작의 주요 원인이 되는 분류효과에 대한 문제점을 분석하고, 이에 대한 대책방안을 제시한다.

  • PDF

The digital transformation of mask dance movement in intangible cultural asset based on human pose recognition (휴먼포즈 인식을 적용한 무형문화재 탈춤 동작 디지털전환)

  • SooHyuong Kang;SungGeon Park;KwangYoung Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.678-680
    • /
    • 2023
  • 본 연구는 2022년 유네스코 인류무형유산 대표목록에 등재된 탈춤 동작을 디지털화하여 후속 세대에게 정보를 제공하는 것을 목적으로 한다. 데이터 수집은 국가무형문화제로 지정된 탈춤 단체 13개, 시도무형문화재 단체 5개에 소속된 무형문화재, 전승자 39명이 관성식 모션 캡처 장비를 착용하고, 8대의 카메라를 이용하여 수집하였다. 데이터 가공은 바운딩박스를 수행하였고, 탈춤동작 추정은 YOLO v8을 사용하였고 탈춤 동작 분류는 YOLO v8에 CNN모델을 결합하여 130개의 탈춤을 분류하였다. 연구결과, mAP-50은 0.953, mAP50-95는 0.596, Accuracy 70%를 달성하였다. 향후 학습용 데이터셋 구축량이 늘어나고, 데이터 품질이 개선된다면 탈춤 분류 성능은 더욱 개선될 것이라 기대한다.

Human-Computer Interface using sEMG according to the Number of Electrodes (전극 개수에 따른 근전도 기반 휴먼-컴퓨터 인터페이스의 정확도에 대한 연구)

  • Lee, Seulbi;Chee, Youngjoon
    • Journal of the HCI Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • NUI (Natural User Interface) system interprets the user's natural movement or the signals from human body to the machine. sEMG (surface electromyogram) can be observed when there is any effort in muscle even without actual movement, which is impossible with camera and accelerometer based NUI system. In sEMG based movement recognition system, the minimal number of electrodes is preferred to minimize the inconvenience. We analyzed the decrease in recognition accuracy as decreasing the number of electrodes. For the four kinds of movement intention without movement, extension (up), flexion (down), abduction (right), and adduction (left), the multilayer perceptron classifier was used with the features of RMS (Root Mean Square) from sEMG. The classification accuracy was 91.9% in four channels, 87.0% in three channels, and 78.9% in two channels. To increase the accuracy in two channels of sEMG, RMSs from previous time epoch (50-200 ms) were used in addition. With the RMSs from 150 ms, the accuracy was increased from 78.9% to 83.6%. The decrease in accuracy with minimal number of electrodes could be compensated partly by utilizing more features in previous RMSs.