• 제목/요약/키워드: 동작 분류

검색결과 510건 처리시간 0.033초

프리미티브 패턴 나열의 확장에 의한 사람 몸 동작 패턴 분류기의 구현 (Implementation of a Human Body Motion Pattern Classifier using Extensions of Primitive Pattern Sequences)

  • 조경은;조형제
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 추계학술발표논문집
    • /
    • pp.475-478
    • /
    • 2000
  • 사람의 몸 동작을 인식해야하는 여러 응용분야에서의 필요성이 대두되면서 이 분야로의 연구가 활발해지고 있다. 이 논문은 사람의 비언어적 행동을 자동적으로 분석할 수 있는 인식기 개발에 관한 것으로 실세계 3 차원 좌표값을 입력으로 하는 사람 몸 동작 패턴 분류기의 구현방법을 소개한 것이다. 하나의 사람 몸 동작은 각 몸 구성 성분(손, 아래팔, 위팔, 어깨, 머리, 몸통 등)의 움직임을 조합해서 정의한 수가 있기 때문에 개별적인 각 몸 구성성분의 움직임을 인식하여 조합해서 임의의 동작을 판별하려는 방법을 적용한다. 사람 몸 동작 패턴 분류기는 측정된 실세계 3 차원 좌표 자료를 양자화한 후 xy, zy 평면에 투영한 값을 자자 구한다. 이 결과를 각각 8 방향 체인 코드로 바꾸고 2 단계 체인 코드 평활화 사업을 하여, 4 방향 코드 체적화 및 대표 코드로의 압축단계를 거친다. 이로서 생성된 프리미티브 패턴나열들을 동작 클래스별로 분류하여 프리미티브 패턴나열의 확장으로 각각의 식별기를 구축하여 각 몸 구성 성분별 동작들을 분류한다. 일련의 실험이 행해져 그 타당성을 확인하였으며, 차후에 이 분류기는 비언어적 행동 분석을 위한 사람 몸 동작 인식기의 전처리 단계로 사용되어진 것이다.

  • PDF

딥 러닝을 사용한 동작 감지 및 분류 (Motion Detection and Classification Using Deep Learning)

  • 김지운;김다희;김동현;장승순;조희제;한영진;김정창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.205-207
    • /
    • 2021
  • 본 논문에서는 딥러닝 (deeo learning)을 이용하여 x, y, z 세 축의 가속도계 측정 값을 이용하여 5가지 동작을 분류하고, 5가지의 동작이 아닌 다른 동작이 들어왔을 때 아닌 동작이라 판단할 수 있는 알고리즘을 제시한다. 제안하는 알고리즘으로는 동작 데이터 각 샘플 마다의 동작을 분류한 개별 판단을 적용하여 5가지 동작을 분류하고 5가지 동작이 아닌 다른 동작이 들어왔을 때 검출하도록 한다.

  • PDF

영상 분류를 위한 준지도 학습 기법의 분류와 동작 원리의 이해

  • 채문주;박재현;조성인
    • 방송과미디어
    • /
    • 제27권2호
    • /
    • pp.10-18
    • /
    • 2022
  • 본 고에서는 준지도 학습의 개념과 목표 그리고 대표 기법들의 동작 원리에 대해서 알아본다. 구체적으로, 영상 분류를 위한 준지도 학습 기법을 크게 label propagation 기반 기법과 representation learning 기반 기법으로 나누고, 이 두 가지 기법들의 특성을 분석하고, 대표 기법들의 동작 원리에 대해서 설명한다. 또한, 영상 분류 문제에서 위 두 가지 접근법들의 대표 기법들의 성능을 평가한다.

표면 근전도를 이용한 Artificial Neural Network 기반의 동작 분류 알고리즘 (Artificial Neural Network based Motion Classification Algorithm using Surface Electromyogram)

  • 정의철;김서준;송영록;이상민
    • 재활복지공학회논문지
    • /
    • 제6권1호
    • /
    • pp.67-73
    • /
    • 2012
  • 본 논문에서는 표면 근전도 신호를 사용하여 손목 움직임의 동작을 분류하기 위해 인공 신경 회로망(ANN : Artificial Neural Network)기반의 동작 분류 알고리즘을 제안한다. 손목 움직임에 무리가 없는 20~30대 성인 26명을 대상으로 척측 수근 굴근과 척측 수근 신근에 부착한 2채널의 전극으로부터 표면 근전도 신호를 취득하고, 취득한 근전도로부터 손목의 굴곡, 신전, 내전, 외전, 휴식 다섯 동작을 인식한다. 빠른 처리 속도를 위해 획득한 신호로부터 시간 영역에서의 특징점을 추출하고 ANN을 이용한 동작 분류에 사용된다. 특징점으로 DAMV, DASDV, MAV, RMS를 사용하였으며, ANN 기반의 동작 분류의 인식율은 DAMV는 98.03%, DASDV는 97.97%, MAV는 96.95%, 그리고 RMS는 96.82%의 정확도를 나타낸다.

  • PDF

자기 구성 지도와 은닉 마르코프 모델을 이용한 가속도 센서 기반 행동 인식 (Activity Recognition based on Accelerometer using Self Organizing Maps and Hidden Markov Model)

  • 황금성;조성배
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.245-250
    • /
    • 2008
  • 최근 동작 및 행동 인식에 대한 연구가 활발하다. 특히, 센서가 소형화되고 저렴해지면서 그 활용을 위한 관심이 증가하고 있다. 기존의 많은 행동 인식 연구에서 사용되어 온 정적 분류 기술 기반 동작 인식 방법은 연속적인 데이터 분류 기술에 비해 유연성 및 활용성이 부족할 수 있다. 본 논문에서는 연속적인 데이터의 패턴 분류 및 인식에 효과적인 확률적 추론 기법인 은닉 마르코프 모델(Hidden Markov Model)과 사전 지식 없이도 자동 학습이 가능하며 의미 깊은 궤적 패턴을 클러스터링하고 효과적인 양자화가 가능한 자기구성지도(Self Organizing Map)를 이용한 동작 인식 기술을 소개한다. 또한, 그 유용성을 입증하기 위해 실제 가속도 센서를 이용하여 다양한 동작에 대한 데이터를 수집하고 분류 성능을 분석 및 평가한다. 실험에서는 실제 가속도 센서를 통해 수집된 숫자를 그리는 동작의 성능 평가 결과를 보이고, 행동 인식기 별 성능과 전체 인식기별 성능을 비교한다.

  • PDF

모션헤드셋의 동작분류기를 위한 사용자 머리동작 분석 (Analysis of User Head Motion for Motion Classifier of Motion Headset)

  • 신춘성;이영호
    • 사물인터넷융복합논문지
    • /
    • 제2권2호
    • /
    • pp.1-6
    • /
    • 2016
  • 최근 다양한 형태의 착용형 컴퓨터가 연구되고 있다. 본 논문에서는 사용자가 음악을 들으며 사용할 수 있는 모션헤드셋의 동작분류기 제작을 위해 머리 움직임 정보의 특징을 분석한다. 모션헤드셋 프로토타입은 스마트폰과 블루투스 통신 방법을 이용하여 음악을 수신받으며, 가속도센서가 측정한 동작정보를 스마트폰으로 전송한다. 그리고 스마트폰에서는 모션 분류기를 통해 머리의 움직임을 분류한다. 실험을 위해 프로토타입을 제작하였다. 사용자 머리의 '위', '아래', '왼쪽', 그리고 '오른쪽' 머리 움직임을 베이지안 분류기를 이용하여 분류하였다. 그 결과 '위'와 '아래'의 머리 움직임의 경우 x, z축의 가속도 센서값이 큰 변화가 있었다. 추후에 사용성 평가를 통해 동작 분류기를 제작할 수 있는 적합한 변수를 찾아 낼 계획이다.

신경망을 이용한 동작 패턴 분류 시스템의 개발 (Development of Gesture Classification system using Artificial Neural Network)

  • 하상형;임성빈;최우경;서재용;전홍태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.793-794
    • /
    • 2006
  • 본 논문에서는 인공 신경망을 이용한 동작 패턴 분류 시스템을 개발하였다. 이 시스템은 자이로 센서와 가속도 센서를 사용하며 3축의 자이로(각속도) 및 가속도를 측정할 수 있는 센서 모듈과 측정된 데이터를 이용해서 동작 패턴을 분류해 주는 신경망 알고리즘으로 구성된다.

  • PDF

인간의 일상동작 인식을 위한 동작 데이터 모델링과 가시화 기법 (Activity Data Modeling and Visualization Method for Human Life Activity Recognition)

  • 최정인;용환승
    • 한국멀티미디어학회논문지
    • /
    • 제15권8호
    • /
    • pp.1059-1066
    • /
    • 2012
  • 오늘날 스마트폰의 발전으로 스마트폰 내장 센서를 통해 사용자의 개인 정보를 쉽게 파악 할 수 있고 원한다면 사용자의 위치를 실시간으로 알아낼 수 있다. 그리하여 센서를 통해 추출된 데이터를 통해 동작인식과 생활 패턴 인식에 관한 연구가 급증하고 있다. 본 논문에서는 기존의 동작 인식 연구에서 추출되는 데이터를 정형화하기 위해 동작 데이터를 모델링하였다. 본 논문의 일상 동작 모델링은 이론적 분석이다. 동작을 크게 두 가지로 분류시켜 가속도 센서만으로 인식 가능한 기본 동작을 물리적 동작으로 정의하고 그 외 목적과 대상, 장소를 포함하는 모든 동작을 논리적 동작으로 분류시켰다. 모델링 된 데이터를 기반으로 각 동작의 특성에 맞게 가시화 하는 방안을 제안하였다. 본 연구를 통해 인간의 일상생활을 동작별로 간편하게 표준화 할 수 있고 기존의 동작 인식 연구에서 추출되는 동작 데이터를 사용자의 요구에 따라 가시화 할 수 있다.

자세 예측을 이용한 효과적인 자세 기반 감정 동작 인식 (Effective Pose-based Approach with Pose Estimation for Emotional Action Recognition)

  • 김진옥
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권3호
    • /
    • pp.209-218
    • /
    • 2013
  • 인간의 동작 인식에 대한 이전 연구는 주로 관절체로 표현된 신체 움직임을 추적하고 분류하는데 초점을 맞춰 왔다. 이 방식들은 실제 이미지 사용 환경에서 신체 부위에 대한 정확한 분류가 필요하다는 점이 까다롭기 때문에 최근의 동작 인식 연구 동향은 시공간상의 관심 점과 같이 저수준의, 더 추상적인 외형특징을 이용하는 방식이 일반화되었다. 하지만 몇 년 사이 자세 예측 기술이 발전하면서 자세 기반 방식에 대한 시각을 재정립하는 것이 필요하다. 본 연구는 외형 기반 방식에서 저수준의 외형특징만으로 분류기를 학습시키는 것이 충분한지에 대한 문제를 제기하면서 자세 예측을 이용한 효과적인 자세기반 동작인식 방식을 제안하였다. 이를 위해 다양한 감정을 표현하는 동작 시나리오를 대상으로 외형 기반, 자세 기반 특징 및 두 가지 특징을 조합한 방식을 비교하였다. 실험 결과, 자세 예측을 이용한 자세 기반 방식이 저수준의 외형특징을 이용한 방식보다 감정 동작 분류 및 인식 성능이 더 나았으며 잡음 때문에 심하게 망가진 이미지의 감정 동작 인식에도 자세 예측을 이용한 자세기반의 방식이 효과적이었다.

의수의 정확한 움직임 제어를 위한 동작 별 뇌파 특징 분류 (EEG Feature Classification for Precise Motion Control of Artificial Hand)

  • 김동은;유제훈;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제25권1호
    • /
    • pp.29-34
    • /
    • 2015
  • Brain-computer interface 기술은 일상에서 편안한 생활을 위해 다방면으로 연구가 진행 중이다. 본 연구는 3가지 동작의 뇌파특성을 분석하여 의수와 같은 외부기기의 세밀한 동작 제어를 목적으로 한다. 피험자들은 악력기를 쥘 때 (Grip), 손가락만을 움직일 때 (Move), 아무런 동작을 취하지 않을 때 (Relax)의 3가지 동작을 수행하였고, 뇌파를 측정하여 power spectrum analysis와 multi-common spatial pattern 알고리즘으로 특징추출을 수행하였으며, 분류알고리즘인 SVM(support vector machine)으로 뇌파의 특징데이터들을 분류하였다. 실험결과 3개의 다른 동작을 분류한 결과, 실험에 참여한 3명의 피험자 중 2명에게서 Grip 클래스의 분류율이 가장 높은 분류율을 보였다. 본 연구의 결과는 뇌파를 이용하여 의수가 필요한 환자들에게 유용할 것으로 기대한다.