• Title/Summary/Keyword: 동일위상동조

Search Result 12, Processing Time 0.017 seconds

A Study on the Attenuation of Surface Acoustic Waves by Optical Measurement Method (광학적 측정방법에 의한 표면 탄성파의 감쇠에 관한 연구)

  • You, I.H.;Kim, D.I.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.4
    • /
    • pp.237-243
    • /
    • 1995
  • We have studied methods of detecting attenuation of solid materials such as silicon wafer and piezoelectric $LiTaO_3$ by means of optical probing techniques. We have performed measurements of surface acoustic waves(SAW) generated from 90 degree wedge type transducer and also from inter-digital transducers(IDT). SAW of 20.0 MHz was generated on a silicon wafer from the 90 degree wedge type transducer and those of 20.8 and 14.5 MHz are generated on a $LiTaO_3$ from the IDT. Then any surface-corrugation resulted from the above SAW was investigated by He-Ne laser beams. We projected laser beams, which were modulated by an optical chopper, on the SAW of the same frequency and then measured the scattered beam by the lock-in amplifier. We modulated and synchronized both SAW and the incident laser beam as well as the phase sensitive detector(PSD) to the same frequency in order to simplify our measurement system. We obtained the attenuation coefficients of SAW to be $0.62{\sim}0.75dB/mm$(from IDT1, 20.8 MHz), and $0.60{\sim}0.72dB/mm$(from IDT2, 14.5 MHz), $0.83{\sim}1.28dB/mm$(from the wedge type), respectively.

  • PDF

Comparison of Three- and Four-dimensional Robotic Radiotherapy Treatment Plans for Lung Cancers (폐암환자의 종양추적 정위방사선치료를 위한 삼차원 및 사차원 방사선치료계획의 비교)

  • Chai, Gyu-Young;Lim, Young-Kyung;Kang, Ki-Mun;Jeong, Bae-Gwon;Ha, In-Bong;Park, Kyung-Bum;Jung, Jin-Myung;Kim, Dong-Wook
    • Radiation Oncology Journal
    • /
    • v.28 no.4
    • /
    • pp.238-248
    • /
    • 2010
  • Purpose: To compare the dose distributions between three-dimensional (3D) and four-dimensional (4D) radiation treatment plans calculated by Ray-tracing or the Monte Carlo algorithm, and to highlight the difference of dose calculation between two algorithms for lung heterogeneity correction in lung cancers. Materials and Methods: Prospectively gated 4D CTs in seven patients were obtained with a Brilliance CT64-Channel scanner along with a respiratory bellows gating device. After 4D treatment planning with the Ray Tracing algorithm in Multiplan 3.5.1, a CyberKnife stereotactic radiotherapy planning system, 3D Ray Tracing, 3D and 4D Monte Carlo dose calculations were performed under the same beam conditions (same number, directions, monitor units of beams). The 3D plan was performed in a primary CT image setting corresponding to middle phase expiration (50%). Relative dose coverage, D95 of gross tumor volume and planning target volume, maximum doses of tumor, and the spinal cord were compared for each plan, taking into consideration the tumor location. Results: According to the Monte Carlo calculations, mean tumor volume coverage of the 4D plans was 4.4% higher than the 3D plans when tumors were located in the lower lobes of the lung, but were 4.6% lower when tumors were located in the upper lobes of the lung. Similarly, the D95 of 4D plans was 4.8% higher than 3D plans when tumors were located in the lower lobes of lung, but was 1.7% lower when tumors were located in the upper lobes of lung. This tendency was also observed at the maximum dose of the spinal cord. Lastly, a 30% reduction in the PTV volume coverage was observed for the Monte Carlo calculation compared with the Ray-tracing calculation. Conclusion: 3D and 4D robotic radiotherapy treatment plans for lung cancers were compared according to a dosimetric viewpoint for a tumor and the spinal cord. The difference of tumor dose distributions between 3D and 4D treatment plans was only significant when large tumor movement and deformation was suspected. Therefore, 4D treatment planning is only necessary for large tumor motion and deformation. However, a Monte Carlo calculation is always necessary, independent of tumor motion in the lung.