• Title/Summary/Keyword: 동유체력 특성

Search Result 15, Processing Time 0.026 seconds

A Study on Hydrodynamic Force Characteristics of Manta-type Unmanned Undersea Vehicle with the Parameter of Appendage Shape (Manta형 무인잠수정의 부가물 형상에 따른 동유체력 특성에 관한 연구)

  • Bae, Jun-Young;Sohn, Kyoung-Ho
    • Journal of Navigation and Port Research
    • /
    • v.33 no.5
    • /
    • pp.309-314
    • /
    • 2009
  • The influence of different appendage shape on the characteristics of hydrodynamic forces on Manta-type Unmanned Undersea Test Vehicle(MUUTV) was discussed experimentally. Fuselage only MUUTV model and two types of MUUTV model with different appendage geometries were considered as the subject of discussion Oblique tow experiment was carried out in circulating water channel with three MUUTV models. A point of difference in hydrodynamic force characteristics among three models was indicated. Furthermore, the linear hydrodynamic derivatives obtained from model experiment were compared with theoretical calculation results from slender body theory, added mass theory and etc. Based on the hydrodynamic force characteristics, motion stability of two types of MUUTV model with different appendage geometries was compared each other. Through the above analysis, the more suitable shape of appendage geometry was made clear.

A Study on Hydrodynamic Force Characteristics of Manta-type Unmanned Undersea Vehicle with the Parameter of Appendage Shape (Manta형 무인잠수정의 부가물 형상에 따른 동유체력 특성에 관한 연구)

  • Bae, Jun-Young;Sohn, Kyoung-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.5-6
    • /
    • 2009
  • The influence of different appendage shape on the characteristics of hydrodynamic forces on Manta-Type Unmanned Undersea Test Vehicle(MUUTV) was discussed experimentally. Fuselage only MUUTV model and two types of MUUTV model with different appendage geometries were considered as subject of discussion Oblique tow experiment was carried out in circulating water channel with three MUUTV models. A point of difference in hydrodynamic force characteristics among three models was compared and discussed. Furthermore, the linear hydrodynamic derivatives obtained from model experiment were compared with theoretical calculation results from slender body theory, added mass theory and ete. Based on the hydrodynamic force characteristics, motion stability of two types of MUUTV model with different appendage geometries was discussed and compared each other. Through the above analysis, the more suitable shape of appendage geometry was made clear.

  • PDF

A Numerical Analysis Review of Motion Response Characteristics and Hydrodynamics in Catamaran (쌍동형 선체의 운동응답특성과 동유체력에 관한 수치해석 비교검토)

  • Oh, Young-Cheol;Ko, Jae-Yong
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.35
    • /
    • pp.41-51
    • /
    • 2013
  • 선박 고속화와 해양레저선박에 대한 관심 증대로 쌍동형 선체건조가 증가하고 있으며 일반적으로 쌍동형 선체는 복원성, 내항성능 및 저항추진 등에서 단동형 선체보다 고속선형 및 갑판활용에 적합하다고 알려져 있다. 하지만, 쌍동형 선체는 갑판 상에서 두 개의 선체를 동체로 결합시킨 선체로서 운동 시 부체 간 공진현상이 수반된 자유표면 거동과 유체력이 발생할 수가 있다. 따라서, 이 논문에서는 이런 공진현상을 감쇠시킬 수 있는 방안을 모색하여 합리적인 쌍동형 선체의 운동응답특성과 동유체력을 산출하였다.

  • PDF

Hydrodynamic-Structural Response Coupling Analysis to a Rectangle Floating Structures (장방형 부유구조물에 대한 동유체력-구조응답 특성)

  • Oh, Young-Cheol;Gim, Ok-Sok;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.577-583
    • /
    • 2012
  • Structures floating in the ocean experience various kinds of external loads, among which wave load is considered as determining factor in structural design. Its relative size compared with wavelength may be used to classify whether the structure is relatively small or large. Traditionally, the small structures are assumed to have little diffraction and the wave loads on large structure are usually calculated by only considering inertia force according to diffraction. In this paper, rectangular floating structures usually used in the ocean, river, and lake are used to find the relationship between hydrodynamic forces and its structural response.

An Experimental Study on Characteristics of Hydrodynamic Forces Acting on Unmanned Undersea Vehicle at Large Attack Angles (대각도 받음각을 갖는 무인잠수정에 작용하는 동유체력 특성에 관한 실험적 연구)

  • Bae, Jun-Young;Kim, Jeong-Jung;Sohn, Kyoung-Ho
    • Journal of Navigation and Port Research
    • /
    • v.35 no.3
    • /
    • pp.197-204
    • /
    • 2011
  • The authors adopt the Unmanned Undersea Vehicle(UUV), the shape of which is like a manta. They call here it Manta UUV. Manta UUV has been designed from the similar concept of the UUV called Manta Test Vehicle(MTV), which was originally built by the Naval Undersea Warfare Center of USA(Lisiewicz and French, 2000; Simalis et al., 2001; U.S. Navy, 2004). The present study deals with the effect of Reynolds numbers on hydrodynamic forces acting on Manta UUV at large angles of attack. The large angles of attack cover the whole range of 0 to ${\pm}$ 180 degrees in horizontal plane and in vertical plane respectively. Static test at large attack angles has been carried out with two Manta UUV models in circulating water channel. The authors assume that the experimental results of hydrodynamic forces (lateral force, yaw moment, vertical force and pitch moment) are analyzed into two components, which are lift force component and cross-flow drag component. First of all, Based on two dimensional cross-flow drag coefficient at 90 degrees of attack angle, the cross-flow drag component at whole range of attack angles is calculated. Then the remainder is assumed to be the lift force component. The only cross-flow drag component is assumed to be subject to Reynolds number.entstly the authors suggest the methodology to predict hydrodynamic derivertives acting on the full-scale Manta UUV.

Hydrodynamic Forces Characteristics of a Circular Cylinder with a Damping Plate (감쇠판이 부착된 원기둥의 동유체력 특성)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The radiation of water waves by a heaving truncated circular cylinder with damping plate is solved in the frame of the three-dimensional linear potential theory. The damping plate has a distinct advantage in reducing the motion response of a floating circular cylinder by increasing the added mass and the damping coefficient. Using the matched eigenfunction expansion method, the characteristics of hydrodynamic added mass and the damping coefficient are investigated with various system parameters, such as the radius and submergence depth of the damping plate. It is found that both added mass and the damping coefficient are significantly increased due to the arranged features of the larger damping plate with shallow submergence, which are positive factors as a motion reduction device of the floating offshore platform. Also the numerical results for an oscillating submerged disk show that the added mass is negative and that the damping coefficient has a peak value at resonant frequency when submergence depth is sufficiently small.

Computation of the Linear and Nonlinear Hydrodynamic Forces on Slender Ships with Zero Speed in Waves : Infinite-Depth Case (정지 세장선의 파랑 중 선형 및 비선형 유체력 계산 : 무한 수심의 경우)

  • Yong-Hwan Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.1-13
    • /
    • 2000
  • In the present paper, an infinite-depth unified theory is applied to the computation of the linear and second-order hydrodynamic forces on slender bodies. No forward speed is assumed, which is valid for some types of ships, like FPSOs and shuttle tankers. Strip theory solution, which is essential for the extension to theory is extended to unified theory, was obtained using NIIRD program developed at MIT. The linear theory is extended to the computation of the second-order mean-drift forces and moment. Furthermore, Aranha's formular is applied to the prediction of wave drift damping coefficients. From this study, it is proved that unified theory provides an accuracy comparable with 3D panel method for the second-order forces as well as the linear solution with much less computational effort.

  • PDF

On the Characteristics of Hydrodynamic Forces in a Restricted Water (제한수역에서의 동유체력에 대한 고찰)

  • I.H. Cho;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.55-60
    • /
    • 1992
  • A study has been made on the hydrodynamic forces on and the motion response of a sliding block in a bay within the framework of linear potential theory. To simplify the problem, following assumptions are made : The configuration of the bay is a long channel with narrow width, constant depth and straight coastline. Incident waves are long compared to the depth. We applied matched asymptotic expansion techniques. The flued domain is subdivided into three regions ; ocean, bay entrance, bay regions. Boundary-vague problems are solved first in each region. Then unknown coefficients are determined by matching individual solutions at the intermediate region between two neighboring legions. It is found that the motion of the block is greatly amplified at the resonant frequencies, in particular at the quarter wavelength mode. We examined the mechanism of negative added mass, which results from the localized hydrodynamic resonance.

  • PDF

Interaction of a Floating Body with a Partially Reflective Sidewall in Oblique Waves (경사 입사파중 부분 반사 안벽과 부유체의 상호작용)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.5
    • /
    • pp.410-418
    • /
    • 2009
  • Based on a linear potential theory, the boundary element method(BEM) is developed and applied to analyze the hydrodynamic forces and the motion responses of a floating body with a partially reflective sidewall. The hydrodynamic forces (added mass and damping coefficients) are dependent on not only the submergence of a floating body and the reflection of a sidewall, but also the gap between body and sidewall. In particular, the partial reflection of a sidewall plays an importance role in the motion responses of a floating body at resonant frequencies. It reduces the resonant peaks caused by resonance phenomenon due to the wave trapping in an enclosed fluid domain between body and sidewall. Developed predictive tools can be used to assess the motion performance of a floating body for various combinations of configuration of a floating body, wave heading, sidewall properties, and wave characteristics and applied to supply the basic informations for the harbour design considering the motion characteristics of a moored ship.

Numerical Analysis of Hydrodynamic Forces on a Floating Body in Two-layer Fluids (밀도가 상이한 두 유체층에서 부유체 동유체력 특성의 수치적 해석)

  • Kim, Mi-Geun;Koo, Weon-Cheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.369-376
    • /
    • 2010
  • In this study, a radiation and a diffraction problems of a floating body in two-layer fluids were solved by the Numerical Wave Tank(NWT) technique in the frequency domain. In two-layer fluids, two different wave modes exist and the hydrodynamic coefficients can be obtained separately for each mode. The two-domain Boundary Element Method(BEM) in the potential fluid using the whole-domain matrix scheme was used to investigate the characteristics of wave forces, added mass and damping coefficients. The effects of the ratio of density and water depth in the lower domain were also evaluated and compared with given references.