• Title/Summary/Keyword: 동역학해석

Search Result 556, Processing Time 0.021 seconds

A Wheel Wear Analysis of Railway Vehicle on a Curved Section (곡선 구간에서 철도 차량 휠의 마모 특성 해석)

  • Kang, Juseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.547-555
    • /
    • 2016
  • The wheel wear of a railway vehicle is mainly generated when maneuvering on a curved track. The change in the wheel profile affects the dynamic stability of the vehicle. In this analysis, the wheel wear volume was calculated while changing the velocity and radius of the curve to analyze the wear characteristics of a wheel at a curved section. The wear index was calculated from a vehicle dynamic analysis based on a multibody dynamics analysis and wear volume from a wear model by British Rail Research. The wear volume at a radius of 300 m is dominant compared with other radii. The wear volume was calculated by assigning different coefficients of friction to the tread and flange of the wheel to investigate the effect of lubrication on the wear characteristics. The effect of the improvement by lubrication is calculated by varying the radius of the track, and is assessed on an actual urban railway section.

Analysis of Bicycle Cushion System by using Repulsive Force of Magnetics (영구자석의 척력을 이용한 자전거 완충장치 해석)

  • Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • One commercial package for magnetic analysis was used to apply repulsive forces of permanent magnetics to bicycle cushion system. Reliabilities of finite element analysis were acquired by comparing with those of experimental measurements. Equivalent spring stiffnesses corresponding to various sizes of magnetics were implemented into the bicycle dynamic model with three degree of freedom. Input force caused at front and rear wheels due to road unevenness was considered in the dynamic model. Dynamic behaviors were observed in terms of vertical displacements of the rider and the front reach as well as pitching displacement of the mass center when the bicycle ran over half-triangular bump. The methodology suggested in this paper by the finite element analysis and numerical model will be an useful tool for more accurate prediction of cushion design for any vehicle system if magnetic forces are utilized.

Molecular Dynamics Simulation of Pseudoelasticity of Cu Nanowires under Cyclic Loading (반복 하중을 받는 구리 나노와이어의 초탄성에 대한 분자 동역학 전산 모사)

  • Cho, Maeng-Hyo;Lee, Sang-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.247-250
    • /
    • 2009
  • 본 연구에서는 반복하중을 받는 구리 나노와이어에서 나타나는 초탄성 거동을 분자동역학 전산모사를 통해 해석하였다. 나노스케일에서는 표면적 대 부피비가 매우 크기 때문에 표면효과가 지배적으로 나타난다. 이로 인해 벌크상태에서는 보이지 않던 새로운 성질들이 나노크기에서 나타나는데, 이러한 효과로 인해 나노와이어의 경우에는 초탄성 거동을 보인다. 초탄성 거동은 나노와이어의 결정학적 방향의 재배열에 의한 것으로써, 하중을 받는 동안 나노와이어의 결정 구조는 변하지 않으며, 쌍정의 발생 및 쌍정계면의 전파에 의해 결정학적 방향이 재배열된다. 재배열에 의해 부분적으로 변형되었던 나노와이어는 하중을 제거하거나 하중의 방향이 바뀜에 따라 원래의 상태를 회복하는 거동을 보이게 된다. 본 연구에서는 분자 동역학 전산 모사를 통해 <100>/{100} 구리 나노와이어가 반복적인 압축-인장 거동 하에서 초탄성을 보이게 됨을 확인하였으며, 반복 하중 싸이클을 증가시키는 전산모사를 통해 나노와이어의 초탄성이 영구적으로 유지됨을 확인하였다.

  • PDF

Dynamic Analysis of the Latch Needle Cam System (편직바늘.캠 시스템의 동역학해석)

  • Jeong, Gwang-Yeong;Kim, Yeong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1764-1771
    • /
    • 2002
  • The latch needle cam system of circular knitting machines is analysed using multibody dynamics. A formulation is made to obtain the vertical stiffness between the needle and the cam. By implementing this formulation into the data of the multibody dynamics program, the motion of the needle is described and the forces and impulses between the needle and the cam are obtained.

Flexible Multibody Dynamic Analysis Using Multirate Integration Method (멀티레이트 수치적분법을 이용한 유연다물체 동역학해석)

  • Kim, Seong-Su;Kim, Bong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2804-2811
    • /
    • 2000
  • A Nordsick form opf the multirate integration scheme has been proposed for flexible multibody dynamic systems. It is assumed that vibrational modal coordinates in the equations of motion are treated as fast variables, whereas the relative joint coordinates are treated as slow variables. In the multirate integration, the fast variables are integrated with small step-size, and the slow variables are integrated with larger step-size. The proposed multirate integration method is based on the Adams-Bashforth-Moulton predictor-corrector method and implemented in the Nordsieck vector form. The Nordsieck form of multrate integration method provides effective step-size control and at the same time, inherits the efficiency from the Adams integration method. Simulations of a flexible gun and turret system of the military tank have been carried out to show the effectiveness and efficiency of the proposed method.

Development and Implementation of Real Time Multibody Vehicle Dynamics Model (실시간 다물체 차량 동역학 모델 개발 및 구현)

  • O, Yeong-Seok;Kim, Seong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.834-840
    • /
    • 2001
  • A real time multibody vehicle dynamics model has been developed and implemented using a subsystem synthesis method based on recursive formulation. To verify real time simulation capability the developed model has been applied to HMMWV(High Mobility Multipurpose Wheeled Vehicle) with steering system. For the kinematically driven steering system, the coupled front suspension-steering subsystem can be decoupled into two SLA suspension subsystems, which improves the efficiency of simulation. To investigate theoretical efficiency, operational counting method has been also employed to compare the proposed model with the conventional recursive dynamics model. Various simulations such as unsymmetric bump run, step steering(J-turn) and sine steering input test have been carried out to verify the real time feasibility of the proposed model.

A Study on Vibration Reduction of fan in wall-mounted air conditioner (벽걸이 에어컨의 팬 진동 저감에 관한 연구)

  • Chung, Jin-tai;Kim, Min-sung;Lim, Jong-hyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.245-246
    • /
    • 2014
  • 에어컨의 실내기에서 발생하는 소음은 주로 회전하는 팬의 진동에 의하여 발생하게 된다. 이는 구조기인 소음으로 낮은 주파수특성을 갖고, 흡음이나 차음의 소음저감방법으로는 해결하기 어려운 특성을 가지고 있다. 본 연구에서는 벽걸이형 에어컨 원심팬에 발생하는 진동(sway motion)의 원인을 진동실험과 동역학 시뮬레이션을 통하여 규명하였다. 실험적인 측면으로는 시스템분석과 시그널분석을 통하여 원심팬 구성품의 물성치 및 동특성을 확보하였고, 해석적인측면으로는 실험으로 확보된 원심팬의 동특성을 바탕으로 동역학 시뮬레이션 모델을 수립하였다. 실험 및 동역학 시뮬레이션을 바탕으로 원심팬 진동의 원인을 규명하였고, 원심팬 진동의 원인은 원심팬과 모터축사이의 축정렬 불량임을 확인하였다. 이를 해결하고 진동을 저감하기위한 장치를 고안하고 실험을 통하여 진동저감효과를 확인하였다.

  • PDF

A Real-time Multibody Vehicle Dynamics and Control Model for a Virtual Reality Intelligent Vehicle Simulator (가상현실 지능형 차량 시뮬레이터를 위한 실시간 다물체 차량 동역학 및 제어모델)

  • 김성수;손병석;송금정;정상윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.173-179
    • /
    • 2003
  • In this paper, a real-time multibody vehicle dynamics and control model has been developed for a virtual reality intelligent vehicle simulator. The simulator consists of low PCs for a virtual reality visualization system, vehicle dynamics and control analysis system a control loading system, and a network monitoring system. Virtual environment is created by 3D Studio Max graphic tool and OpenGVS real-time rendering library. A real-time vehicle dynamics and control model consists of a control module based on the sliding mode control for adaptive cruise control and a real-time multibody vehicle dynamics module based on the subsystem synthesis method. To verify the real-time capability of the model, cut-in, cut-out simulations have been carried out.

The Efficient Dynamic Modeling of a Manipulator Robot System (제조 공정용 로봇 매니퓰레이터의 효율적 다물체 동역학 해석 모델링 기술 개발)

  • Song, In-Ho;Ryu, Han-Sik;Choi, Jin-Hwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.155-164
    • /
    • 2015
  • Recently, the robot manipulators are needed more slim size and longer reach and more accurate movement for increasing productivity. So, in this paper, the simulation modeling method and the efficient modeling method for new slim & long reach robot has been investigated for forecasting the slim robot performance before making prototype. To do this investigation, the major parts of robot driving system such as motor, belt and reducer devices and parts assembly method have been investigated mainly. And then, using this developed modeling method the new designed robot will be forecasted about the dynamic performance of new designed robot.

Development of Multi-Body Dynamics Simulator for Bio-Mimetic Motion in Lizard Robot Design (도마뱀 로봇 설계를 위한 생체운동 모사 다물체 동역학 시뮬레이터 개발)

  • Park, Yong-Ik;Seo, Bong Cheol;Kim, Sung-Soo;Shin, Hocheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.585-592
    • /
    • 2014
  • In this study, a multibody simulator was developed to analyze the bio-mimetic motion of a lizard robot design. A RecurDyn multibody dynamics model of a lizard was created using a micro-computerized tomography scan and motion capture data. The bio-mimetic motion simulator consisted of a trajectory generator, an inverse kinematics module, and an inverse dynamics module, which were used for various walking motion analyses of the developed lizard model. The trajectory generation module produces spinal movements and gait trajectories based on the lizard's speed. Using the joint angle history from an inverse kinematic analysis, an inverse dynamic analysis can be carried out, and the required joint torques can be obtained for the lizard robot design. In order to investigate the effectiveness of the developed simulator, the required joint torques of the model were calculated using the simulator.