• Title/Summary/Keyword: 동역학적 해석

Search Result 248, Processing Time 0.026 seconds

Interdisciplinary Research for Pre-prevention Measures of turbid water with Watershed Units (수계단위 탁수예방 대책 수립을 위한 학제간 연구)

  • Yum, Kyung-Tak;Cho, Yong-Deok;Kim, Jae-Yun;Ban, Yang-Jin;Park, Bong-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.544-549
    • /
    • 2008
  • 최근 임하댐, 소양강댐을 대상으로 탁수의 문제가 심각하게 제시되고 있으며, 이에 대한 대책을 수립하기 위해 정부, 공공연구기관, 대학 등에서 다양한 연구를 진행하고 있으나 탁수 발생에 대한 근본적인 대책 수립과 이의 효과에 대한 분석이 이루어지고 있지 않은 실정이다. 현시점에서 탁수발생의 근본적인 원인을 규명하고 이에 대한 대책이 계획적이고 치밀하게 수립되어야 할 것으로 판단 된다. 우리나라의 기후변화는 지난 100년($1906{\sim}2005$) 동안 평균 기온이 약 $1.5^{\circ}C$ 상승하였으며, 강우 강도가 큰 집중호우의 발생빈도는 약 18% 증가한 반면, 강우일수는 약 14% 감소하는 추세에 있다. 또한, 지구온난화로 인하여 식생대, 어종 등 생태계가 아열대성 기후로 진행되고 있으며, 탁수발생의 원인은 이상기후로 인한 강우강도의 증가뿐만 아니라, 집중홍수 빈발, 식생대(Vegetation) 변화와 유역관리(Watershed Management) 소홀 등의 복합적인 원인에 의하여 새롭게 발생되는 현상이다. 또한, 최근의 탁수는 댐 상류는 물론 수계전반에 걸쳐 발생하고 있으며, 지난 2007년 발생한 북한강 수계의 탁수문제 등에서 이제는 정부차원의 체계적인 발생원인 규명과 대책 마련이 필요한 실정이다. 댐 및 하천으로 유입되는 탁수는 저수지의 고탁도 현상의 장기화를 야기시키며, 이로 인해 댐 저수지 및 하류하천 수질악화, 정수처리 비용 증가 등 댐 저수지의 효율적인 수질관리가 어려운 실정이다. 한편, 고농도의 인(P)이 유입되어 저수지내 부영양화(Eutrophication) 및 수생태계의 변화를 초래하고 있다. 앞으로도 잠재적 탁수발생 가능성이 커질 것으로 전망됨에 따라 탁수발생 메커니즘 규명, 댐 저수지내 수리동역학적 거동특성 및 생태계에 영향(Ecological Impact) 등 탁수와 관련된 미개척 분야의 연구가 시급한 상황이다. 댐과 유역을 분리하여 수립된 기존의 대책으로는 탁수발생의 근본적인 원인규명과 대책 수립이 어려운 실정이므로 수계단위로 탁수에 대한 연구가 진행되어야 한다. 따라서 수계별로 탁수발생의 근본적인 원인을 규명하기 위하여는 수계별 탁수발원지 및 발생원인 조사, 댐 저수지의 수리동역학적 탁수거동 해석, 탁수발생 잠재성 평가, 수계단위 탁수예방 대책 수립을 위한 우선순위 결정 등을 포함한 학제적인(Interdisciplinary) 연구를 진행할 계획이다.

  • PDF

A Study on Partial-Load Performance Experiment & Analysis for Dynamic Transient Effect of Free Shaft Gas Turbine Engine (분리 축 가스터빈엔진의 동역학적 천이효과에 의한 부분부하성능 시험 및 해석에 관한 연구)

  • 김경두;이원중;양수석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.183-188
    • /
    • 2003
  • The present work was conducted to build a propulsion system for an airship. For this purpose, free shaft gas-turbine was modified to produce electrical power. he experiments were carried out to analyze the driving rotor condition at various power shaft loads. From this analysis, an appropriate damping device was required, and the changeable inertial moment from the fly-wheel was applied. Without the appropriate damping device, instability was found, and it was resulted as power loss. Also the amount of inertial moment was certified by the performance of dynamic transient effects from the engine test results. Knowledge gained from this research could benefit the propulsion and power conversion community by increasing the better understanding of shaft loads and inertial effects.

  • PDF

Dynamic Properties and Settlement Characteristics of Korea Weathered Granite Soils (화강풍화토의 동적 물성치와 침하특성에 대한 연구)

  • Park, Jong-Gwan;Kim, Yeong-Uk;Lee, In-Mo
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.5-14
    • /
    • 1993
  • Weathered granite soil is the most representative as a surface soil in Korea. In this paper, the dynamic properties and settlement characteristics of Korea granite soil are studied through the dynamic triaxial compression tests. The dynamic characteristics are very important on the analysis of the foundations under dynamic loading such as machine vibration and earthquake. Soil samples having different grain sixtes were prepared at the relative densities between 80oA and 90oA and tested to measure shear moduli and damping ratios at each level of shear strain. The measured shear moduli of weathered granite soils showed large variations according to the grain sizes, confining pressures, relative densities and shear strains. Sandy weathered granite had a little larger dynamic properties than the average values of the sand studied by Seed and Idriss. Pot the well compacted granite soils, little residual settlements occured due to dynamic loading.

  • PDF

Frequency Domain Analysis for Hydrodynamic Responses of Floating Structure using Desingularized Indirect Boundary Integral Equation Method (비특이화 간접경계적분방정식 방법을 이용한 부유식 구조물의 유체동역학적 거동에 대한 주파수영역 해석)

  • Oh, Seunghoon;Jung, Dongho;Cho, Seok-kyu;Nam, Bo-woo;Sung, Hong Gun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.11-22
    • /
    • 2019
  • In this paper, a Rankine source method is applied and validated to analyze the hydrodynamic response of a three-dimensional floating structure in the frequency domain. The boundary value problems for radiation and diffraction problem are solved by using a desingularized indirect boundary integral equation method (DIBIEM). The DIBIEM is simpler and faster than conventional methods based on the numerical surface integration of Green's function because the singularities of Green's function are located outside of fluid regions. In case of floating structure with complex geometry, it is difficult to desingularize the singularities of Green's function consistently. Therefore a mixed approach is carried out in this study. The mixed approach is partially desingularized except singularities of the body. Wave drift loads are calculated by the middle-field formulation method that is mathematically simple and has fast convergence. In order to validate the accuracy of the developed program, various numerical simulations are carried out and these results are analyzed and compared with previously published calculations and experiments.

An operational analysis and dynamic behavior for a landing gear system using ADAMS (ADAMS를 이용한 항공기 착륙장치 작동 동적거동 해석)

  • Choi, Sup;Kwon, Hyuk-Beom;Chung, Sang-Joon;Jung, Chang-Rae;Sung, Duck-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.110-117
    • /
    • 2003
  • The operational characteristics of the landing gear retraction/extension depend on the complexity of design variables operational/environmental conditions. In order to meet the requirements of minimum stow area and performance, the integration of the landing gear system requires operational kinematic and dynamic analysis considering an effect of its related system. This study investigates operational dynamic behaviors of the T-50 landing gear system using ADAMS. Taking into account for various operational/environmental conditions, an analysis of dynamic behavior on the landing gear operational characteristics is performed with experience derived from a wide range of proprietary designs. Analytical results are presented for discussing the effects of temperature, aerodynamic and maneuver load on normal/emergency operation of the landing gears and doors. This analysis leads us to the conclusion that the proposed program is shown to be a better quantitative one that apply to a new development and troubleshooting of the landing gear system.

Nonlinear Liquid Sloshing Analysis in a Cylindrical Container by Arbitrary Lagrangian-Eulerian Approach (Arbitrary Lagrangian-Eulerian 기법에 의한 원통형 유체저장구조물 내부유체의 비선형 슬러싱 해석)

  • Kwon, Hyung-O;Cho, Kyung-Hwan;Kim, Moon-Kyum;Lim, Yun-Mook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.71-80
    • /
    • 2005
  • The solution to a liquid sloshing problem is challenge to the field of engineering. This is not only because the dynamic boundary condition at the free surface is nonlinear, but also because the position of the free surface varies with time in a manner not known a priori. Therefore, this nonlinear phenomenon, which is characterized by the oscillation of the unrestrained free surface of the fluid, is a difficult mathematical problem to solve numerically and analytically. In this study, three-dimensional boundary element method(BEM), which is based on the so-called an arbitrary Lagrangian-Eulerian(ALE) approach for the fluid flow problems with a free surface, was formulated to solve the behavior of the nonlinear free surface motion. An ALE-BEM has the advantage to track the free surface along any prescribed paths by using only one displacement variable, even for a three-dimensional problem. Also, some numerical examples were presented to demonstrate the validity and the applicability of the developed procedure.

Linear Spectral Method for Simulating the Generation of Regular Waves by a Moving Bottom in a 3-dimensional Space (3차원 공간에서 바닥의 움직임에 의한 규칙파의 생성을 모의할 수 있는 선형 스펙트럼법)

  • Jae-Sang Jung;Changhoon Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.70-79
    • /
    • 2024
  • In this study, we introduce a linear spectral method capable of simulating wave generation and transformation caused by a moving bottom in a 3-dimensional space. The governing equations are linear dynamic free-surface boundary conditions and linear kinematic free-surface boundary conditions, which are solved in Fourier space. Solved velocity potential and free-surface displacement should satisfy continuity equation and kinematic bottom boundary condition. For numerical analysis, a 4th order Runge-Kutta method was utilized to analyze the time integral. The results obtained in Fourier space can be converted into velocity potential and free-surface displacement in a real space using inverse Fourier transform. Regular waves generated by various types of moving bottoms were simulated with the linear spectral method. Additionally, obliquely generated regular waves using specified bottom movements were simulated. The results obtained from the spectral method were compared to analytical solutions, showing good agreement between the two.

Numerical Analysis of Hydrodynamic Performance of a Movable Submerged Breakwater Using Energy Dissipation Model (에너지 소산 모델을 이용한 잠수된 가동식 방파제의 유체동역학적 성능 수치해석)

  • Kim, Do-Hyun;Koo, Weon-Cheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.287-295
    • /
    • 2012
  • Hydrodynamic performance of a movable submerged breakwater was analyzed using energy dissipation model. Based on two-dimensional boundary element method the equation of motion including a viscous dissipation term proportional to velocity squared was solved by Newton-Raphson method. Energy dissipation coefficients as well as reflection and transmission coefficients of a submerged flat plate were calculated with various plate lengths and thickness. Both real and imaginary components of body displacement and forces were used to solve the motion of breakwater accurately. The effect of the magnitude of dissipation coefficient on the body displacement was evaluated. The results from the potential theory with no dissipation term were found to be an overestimate in resonance frequency.

An analytical expression for a dynamic optimal design of the stewart platform (스튜어트 플랫폼의 동역학적 최적설계를 위한 해석적인 표현)

  • Kwon, Byung-Hee;Son, Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.175-178
    • /
    • 1997
  • This study was carried out to obtain an analytical expression for the specifications of the Stewart Platform that minimize the maximum force acting on the hydraulic cylinder. The position and orientation of the platform were calculated by means of the inverse kinematic analysis. The maximum force to be exerted on a cylinder was calculated using the Newton's second law for the case when the platform is moved along a horizontal axis with 0.6 g, the maximum translational acceleration possible. This paper suggests a mathematical model to minimize the maximum actuating force using radius and angle ratios as design variables. Finally, a fuzzy set for the minimum actuating force is proposed for this dynamic optimal design problem.

  • PDF

UNSTEADY STAGING FLOW ANALYSIS USING MOVING GRID SYSTEM (움직이는 격자를 이용한 비정상 단분리 유동해석)

  • Kwon K. B.;Yoon Y. H.;Hong S. K.
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.43-47
    • /
    • 2005
  • In this study, the numerical and dynamic simulation on staging problem including forward jet mechanism is conducted. The forward jet plays a vital role in staging, which jets out from aftbody. This staging environment needs full dynamic characteristics study and flow analysis for securing staging safety. Present study performs dynamic simulation of forebody and aftbody with flow analysis using the Chimera grid scheme which is usually used for moving body simulations. As a result, the separation mechanism using forward jet well work in staging for given initial conditions and reverse thrust, chamber pressure variation from experiments. Furthermore, it is found that the technique using forward jets for staging is excellent for securing the separation safety.