• 제목/요약/키워드: 동시 질산화 탈질

Search Result 33, Processing Time 0.017 seconds

Variation of Nitrogen Removal Efficiency and Microbial Communities Depending on Operating Conditions of a CANON Process (CANON 공정에서 운전조건에 따른 질소 제거효율 및 미생물군집 변화)

  • Jo, Kyungmin;Park, Younghyun;Cho, Sunja;Lee, Taeho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.332-339
    • /
    • 2015
  • Nitrogen removal is one of the most important issues about wastewater treatment because nitrogen is a primary pollutant caused various problems such as eutrophication. We developed a CANON microbial community by using AOB and ANAMMOX bacteria as seeding sources. When 100 mg-N/L of influent ammonium was supplied, the DO above 0.4 mg/L showed a very low TN removal efficiency while the DO of 0.3 mg/L showed TN removal efficiency as high as 71.3%. When the influent ammonium concentration was reduced to 50 mg/L, TN removal efficiency drastically deceased. However, TN removal efficiency was recovered to above 70% after 14 day operation when the influent nitrogen concentration was changed again from 50 mg-N/L to 100 mg-N/L. According to the operating temperature from $37{\pm}1^{\circ}C$ to $20{\pm}1^{\circ}C$, TN removal efficiency also rapidly decreased but gradually increased again up to $70.0{\pm}2.6$%. The analysis of PCR-DGGE showed no substantial difference in microbial community structures under different operational conditions. This suggests that if CANON sludge is once successfully developed from a mixture of AOB and ANAMMOX bacteria, the microbial community can be stably maintained regardless of the changes in operational conditions.

Operation Parameters on Biological Advanced Treatment of Phenolic High-Strength Wastewater (페놀계 고농도 유기성 폐수의 생물학적 고도처리 운전인자)

  • Hong, Sung-Dong;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.797-806
    • /
    • 2000
  • The objectives were to compare the biodegradable threshold concentrations of phenol with the different composition of the influent carbon source and examine the SMA (Specific Methanogenic Activity)and the possibility of simultaneous removal of high-strength organics and nitrogen compounds in UASB(Upflow Anaerobic Sludge Blanket) - PBR(Packed Bed Reactor) process. The results showed that UASB reactors were efficient to remove phenol and phenol + glucose from synthetic wastewater. At phenol conc, of 600 mg/L and SCOD conc. of 2100 mg/L in UASB reactor(with only phenol as substrate), the removal efficiencies of phenol and SCOD were over 99% and 93% respectively, under MLVSS of 20 g. The activity of microorganism was $0.112g\;phenol/g\;VSS{\cdot}d$, $0.351g\;SCOD/g\;VSS{\cdot}d$. The gas production rate was $0.115L/g\;VSS{\cdot}d$ and $CH_4$ content in gas was about 70%. At phenol conc. of 760 mg/L and SCOD conc. of 4300 mg/L in UASB reactor( with phenol + glucose as substrates), the removal efficiencies of phenol and of SCOD were over 99% and 90% respectively, under MLVSS of 20 g. The activity of microoganism was $0.135g\;phenol/g\;VSS{\cdot}d$, $0.696g\;SCOD/g\;VSS{\cdot}d$. The gas production rate was $0.257L/g\;VSS{\cdot}d$ and $CH_4$ content in gas was about 70%. Serum bottle test showed that the activity of granule was inhibited over 1600 mg/L phenol conc, and denitrification and methanogenesis simultaneously took place in UASB granules under co-substrates conditions. PBR reactor packed with cilium type media, was efficient in nitrification. In condition of $0.038kg\;NH_4-N/m^3-media{\cdot}d$. 10~12 mg/L phenol conc. and 200~500 mg/L SCOD conc., nitrification efficiency was over 90% and phenol removal efficiency was over 98%.

  • PDF

Evaluation of Affecting Factors on N and P removal in Biological SND (Simultaneous Nitrification and Denitrification) Process with NADH Sensor (NADH 센서를 이용한 생물학적 동시 탈질.질산화공정에서 질소, 인제거 영향인자 및 거동 평가)

  • Kim, Han-Lae;Lee, Si-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.5
    • /
    • pp.374-381
    • /
    • 2008
  • In this study, the factors affecting biological N and P removal using SND (simultaneous nitrification and denitrification) process were investigated and evaluated to examine the possibility of treating N and P through SND with NADH by surveying N and P traces in an aeration tank. Variations of $NH_4^+$-N+$NO_3^-$-N concentration were used to estimate the degree of SND in each point (P2, P3, P4, P5) of the aeration tank and these variations showed that denitrification efficiency in P2 (front zone), nitrification and denitrification efficiencies in P4 (middle zone) were 67%, 86% and 39%, respectively. When $PO_4^{-3}$-P concentration was analyzed in each point of the aeration tank, it was shown that $PO_4^{-3}$-P concentration coming into P2 was 1.25 mg/L, which increased to 2.22 mg/L by P release in P2 zone and then decreased to 0.74 mg/L by P uptake in P4. Consequently, we were able to estimate which high P removal efficiency observed in this study was caused by biological phosphorus removal. To determine the operating factors affecting effluent T-N, we analyzed the correlation among FN/M ratio, C/N ratio, Temp., SRT etc and these results showed that the correlation among FN/M ratio, C/N ratio and Temp was not high. However, the relationship of SRT and other parameters (effluent $NH_4^+$-N and effluent BOD) and the short SRT could have an affect on effluent $NH_4^+$-N and so effluent BOD could be increased. Thus, SRT operation should be controlled over 10 days. The results for analyzing the correlation between SRT and influent $NO_3^-$-N in order to investigate the operating factors affecting effluent T-P showed that T-P or $PO_4^{-3}$-P was not highly correlation with SRT, whereas $PO_4^{-3}$-P concentration increased along with increasing $NO_3^-$-N concentration into P2. Based on these results, we concluded, using regression analysis (R2=0.97), that effluent $PO_4^{-3}$-P concentration depends on $NO_3^-$-N concentration into P2.