예혼합 분무화염의 유적군 연소 기구를 평가하기 위하여 레이저 가시화법, MICRO (multi-color integrated Cassegrain receiving optics) 및 PDA (phase Doppler anemometer) 광학계측 시스템을 이용하여 동시 시계열 계측을 실시하였다. 또한 유적군의 군연소수를 실험적으로 산출하여 이론해석에 적용하였을 경우 실제로 관찰되는 군연소 형태와 일치하는지에 대하여 검토하였다. 유적군 단면화상에 의해 확인된 모든 유적군에 대하여 실험적으로 군연소수 $G_c$를 산출한 결과 주로 내부 군연소와 외부 군연소로 분류되었으며 이론해석과 일치하였다. 또한 실제 관찰된 군연소 형태와 그 유적군의 군연소수를 이론해석에 적용한 경우에 군연소 형태가 일치하는 경우와 일치하지 않는 경우가 있었다. 일치하지 않는 원인은 군연소수를 유적의 기하학적 배치만으로 결정한 것이나 현상의 3차원성이 측정 결과에 영향을 미친 것이라고 생각되어진다.
모돈의 건강 상태를 정량 지수화 하기 위한 연구를 수행 중이다. 지제이상, 섭식 불량, 수면 패턴 등의 운동 특성 분석을 위하여 복수의 초음파 센서를 이용하였다. 시계열 계측 신호를 분석하여 정량 지수화를 수행하는 과정에서 주파수 도메인 분석을 시도하였다. 이 과정에서 주파수 도메인의 분해능에 따른 편차 극복을 위한 비선형 모델링을 수행하였다. 또한 인접한 시계열 데이터 구간 간의 상관성 분석이 가능하면 대용량 데이터의 실시간 처리로 인한 지연 시간 극복 및 기대되는 예후에 대한 조기 진단이 가능할 것이다. 본 연구에서는 구글에서 제공하는 Tensorflow와 NVIDIA에서 제공하는 CUDA 엔진을 동시 적용한 심층 학습 시스템을 이용하였다. 전 처리를 위하여 주파수 분해능 (2분, 3분, 5분, 7분, 11분, 13분, 17분, 19분)에 따른 데이터 집합을 1단계로 두고, 상위 10 순위 안에 드는 파워 스펙트럼 밀도의 크기를 2단계로 하여, 총 2~10개의 입력 노드를 순차적으로 선정하였고, 동일한 방식으로 인접한 시계열의 파워 스펙터럼 밀도를 순위를 변화시켜 지정하였다. 대표적인 심층학습 모델인 Softmax regression with a multilayer convolutional network를 이용하여 Recursive feature selection 경우의 수를 $8{\times}9{\times}9$로 총 648 가지 선정하고, Epoch는 10,000회로 지정하였다. Calibration 모델링의 경우 Cost function이 10% 이하인 경우 해당 경우의 학습을 중단하였으며, 모델 간 상호 교차 검증을 수행하기 위하여 $_8C_2{\times}_8C_2{\times}_8C_2$ 경우의 수에 대한 Verification test를 수행하였다. Calibration 과정 상 모든 경우에 대하여 10% 이하의 Cost function 값을 보였으나, 검증 테스트 과정에서 모든 경우에 대하여 $r^2$ < 0.5 인 결정 계수 값이 나타났다. 단적으로 심층학습 모델의 과도한 적합(Over fitting) 방식의 한계를 보인 것이라 판단할 수 있다. 적합한 Feature selection 및 심층 학습 모델에 대한 지속적이고 추가적인 고려를 통해 과도적합을 해소함과 동시에 실효적이고 활용 가능한 Classification을 위한 입, 출력 노드 단의 전후 Indexing, Quantization에 대한 고려가 필요할 것이다. 이를 통해 모돈 생체 정보 정량화를 위한 지능형 현장 진단 기술 연구를 지속할 것이다.
기후변화 따른 스마트팜 돈사 외부 환경의 변화에 대응하고, 사육 환경을 능동적으로 개선하기 위한 연구가 수행 중이다. 돈사 내 열전달 요소 간 상호 역학성 분석을 위해서 고려해야할 사항은 입기구, 보온 등, 열풍기, 단열제, 위치, 방향, 돈사의 연평균 온도, 습도, 연중 일사량, 가축의 열복사 등 상호 복잡하게 연관되어 있는 물리량이다. 돈사 전체 열손실, 자연발생 에너지량, 강제발생 에너지량, 난방용량 등을 고려한 순간 열부하 산정을 위한 여러 방법 중 우선적으로 CFD(Computational Fluid Dynamics)를 이용하였다. 순간 열부하 산정을 위한 해석 도구 선정에 있어서 다양한 유체 및 기체 전산 유체역학 Solver(Fluent, Open-FOAM, Blender)를 고려하였다. 공간 Mech를 수행하기 위한 도구로는 공개 소프트웨어 인 FreeFem++ 3.51-4 (http://www.freefem.org)를 이용하였다. 이 과정에서 일부 기체 (암모니아)의 농도를 난수로 변화시키는 기법을 적용하여 가상적으로 돈사의 환경을 Pseudo 시뮬레이션 하였다. 결과적으로 Fluent에 비하여 OpenFOAM을 이용하여 얻은 열유동의 방향(속도)과 크기 백터가 상대적으로 크게 나타났다. Fluent가 시계열 상에서 혼합 기체 물리량 변화를 무시할 수 있는 안정되고 균일한 환경에 적합하기 때문인 것으로 판단되었다. Blender의 경우 Lattice Boltzmann methods 과 Smoothed-particle hydrodynamics 방법을 이용한 유체/입자 동력학 모델링을 제공함에 있어 시각적 효과를 강조하는 기능에 중점을 두었다. Fluent와 Blender에서 제공하는 해석 연산 모듈의 정확성 검증을 위해선 공간 분해능을 높인 정밀 계측 시스템을 이용하여 검증할 필요가 있다. Open-FOAM를 이용한 열부하 분석 수행이 상대적으로 높은 절대값을 보이는 특성은 열부하 제어 시스템의 Overshoot를 유발할 가능성이 있으므로 이에 대한 해석 모델의 보정이 추가적으로 필요할 것이다. CFD의 한계인 시간 복잡도를 낮추고 상대적으로 높은 시계열 분해능을 확보할 경우 돈사 내 환기시스템에 맞는 소요 환기량 실시간 산정이 가능해지고 외부기상 및 돈사내부 복사열을 활용함과 동시에 돈군 순환에 상응하는 실시간 열부하 관리 시스템 도출이 가능할 것이다.
모돈은 사육 특성상 제한된 파일롯 공간 안에 장시간 머물기 때문에 과중한 몸무게에 의한 지제 이상, 섭식 등의 불량, 수면상태의 불량 등을 지속적으로 관찰해야 하는 대상이다. 측면에 다수의 초음파 센서를 설치하여 기립의 상태 및 운동 시 몸체 궤적의 특성을 분석하여 종합적으로 모돈의 행동 특성을 정량화 하고자 하였다. 이 과정에서 계측 신호의 값을 대수적으로 비교하는 방식에 한계가 있음을 발견하였고, 이를 해결하고자 10 Hz/Ch 내외의 시계열 상대거리 궤적 신호를 주파수 도메인으로 변경하여 분석을 수행하였다. 일정 주파수에 집중되어 있는 주파수 값의 크기 변화(파워 스펙트럼 밀도)를 기준으로 모돈의 움직임의 정상 상태 유무 판별이 가능하였다. 단, 이러한 분석은 계측 데이터를 일괄 처리 방식으로 분석하는 방법으로 도출이 되었으므로, 계측과 정량 분석을 동시에 수행하기 위한 개선이 필요하였다. 계측 시스템에서 사용한 마이크로 프로세서는 Nucleo-446(STMelectronics, CA, USA)로 180 Mhz의 클럭 속도로 작동하나, 총 100 Hz 내외의 16비트 계측 신호에 대해 추가적으로 FFT 등의 주파수 변환 신호 처리를 수행하기에는 연산 능력이 부족하였다. 한편, 주파수 분석의 주기를 1분 단위로 할 경우 처리해야할 정보의 크기는 $100{\times}60{\times}5{\times}2Byte$ 이므로 1분 내에 해당 연산을 종료할 수 있는 추가의 연산 장치가 필요하였다. 계측과 주파수 도메인 변환 연산을 동시에 수행하기 위하여 1 Ghz의 연산능력을 가진 ARM A9 계열의 초소형 멀티코어 AP인 NanoPi Neo Air(Friendlyarm, Guangzhou, China)을 선정하였다. 4개의 코어를 각각 계측, Median 필터링, Smoothing 연산, FFT 분석에 사용하여 1분 단위, 2분 단위, 5분 단위의 주파수 분석을 동시에 수행하였다. 병렬 연산 라이브러리는 오픈 소스인 MPICH(www.mpich.org)를 이용하였다. 상대적으로 여유있는 자원을 보유하고 코어를 실시간으로 결정하여 다수의 모돈 개체 동시 모니터링을 위한 네트워크 연결 역할을 동시에 수행하도록 하였다. 1주일 내외의 요인 실험 수행 결과, 약 70 Mbyte의 데이터가 축적이 되었으며, 1분 단위, 2분 단위, 5분 단위의 주파수 도메인 변환 후 결과를 동시에 취득할 수 있었다. 일부 주파수 도메인 상의 파워 밀도 값이 모돈의 행동 특성에 분석에 유효한 정보를 제공함을 발견하였다. 모돈사 내 현장 보급이 가능한 초소형 AP와 멀티 코어 기반 병렬 처리 기법을 이용한 현장 진단 시스템 개발 연구를 지속적으로 수행할 것이다.
자동화 기술을 통한 한국형 스마트팜의 발전이 비약적으로 이루어지고 있는 가운데 무인화를 위한 지능적인 스마트 시설환경 관찰 및 분석에 대한 요구가 점점 증가 하고 있다. 스마트 시설환경에서 취득 가능한 시계열 데이터는 온도, 습도, 조도, CO2, 토양 수분, 환기량 등 다양하다. 시스템의 경계가 명확함에도 해당 속성의 특성상 타임도메인과 공간도메인 상에서 정확한 추정 또는 예측이 난해하다. 시설 환경에 접목이 증가하고 있는 지능형 관리 기술 구현을 위해선 시계열 공간 데이터에 대한 신속하고 정확한 정량화 기술이 필수적이라 할 수 있다. 이러한 기술적인 요구사항을 해결하고자 시도되는 다양한 방법 중에서 공간 분해능 향상을 위한 다지점 계측 메트릭스를 실험적으로 구성하였다. $50m{\times}100m$의 단면적인 연동 딸기 온실을 대상으로 $3{\times}3{\times}3$의 3차원 환경 인자 계측 매트릭스를 설치하였다. 1 Hz의 주기로 4가지 환경인자(온도, 습도, 조도, CO2)를 계측하였으며, 계측 하는 시점과 동시에 병렬적으로 공간통계법을 이용하여 미지의 지점에 대한 환경 인자들을 실시간으로 추정하였다. 선행적으로 50 cm 공간 분해능에 대응하기 위하여 Kriging interpolation법을 횡단면에 대하여 분석한 후 다시 종단면에 대하여 분석하였다. 3 Ghz에 해당하는 연산 능력을 보유한 컴퓨터에서 1초 동안 획득한 데이터에 대한 분석을 마치는데 소요되는 시간이 15초 내외로 나타났다. 이는 해당 알고리즘의 매우 높은 시간 복잡도(Order of $O=O^3$)에 기인하는 것으로 다양한 시설 환경의 관리 방법론에 적절히 대응하기에 한계가 있다 할 수 있다. 실시간으로 시간 복잡도가 높은 연산을 수행하기 위한 기술적인 과제를 해결하고자, 근래에 관심이 증가하고 있는 NVIDIA 사에서 제공하는 CUDA 엔진과 Apple사의 제안을 시작으로 하여 공개 소프트웨어 개발 컨소시엄인 크로노스 그룹에서 제공하는 OpenCL 엔진을 비교 분석하였다. CUDA 엔진은 GPU(Graphics Processing Unit)에서 정보 분석 프로그램의 연산 집약적인 부분만을 담당하여 신속한 결과를 산출할 수 있는 라이브러리이며 해당 하드웨어를 구비하였을 때 사용이 가능하다. 반면, OpenCL은 CUDA 엔진이 특정 하드웨어에서 구동이 되는 한계를 극복하고자 하드웨어에 비의존적인 라이브러리를 제공하는 것이 다르며 클러스터링 기술과 연계를 통해 낮은 하드웨어 성능으로 인한 단점을 극복하고자 하였다. 본 연구에서는 CUDA 8.0(https://developer.nvidia.com/cuda-downloads)버전과 Pascal Titan X(NVIDIA, CA, USA)를 사용한 방법과 OpenCL 1.2(https://www.khronos.org/opencl/)버전과 Samsung Exynos5422 칩을 장착한 ODROID-XU4(Hardkernel, AnYang, Korea)를 사용한 방법을 비교 분석하였다. 50 cm의 공간 분해능에 대응하기 위한 4차원 행렬($100{\times}200{\times}5{\times}4$)에 대하여 정수 지수화를 위한 Quantization을 거쳐 CUDA 엔진과 OpenCL 엔진을 적용한 비교한 결과, CUDA 엔진은 1초 내외, OpenCL 엔진의 경우 5초 내외의 연산 속도를 보였다. CUDA 엔진의 경우 비용측면에서 약 10배, 전력 소모 측면에서 20배 이상 소요되었다. 따라서 우선적으로 OpenCL 엔진 기반 하드웨어 가속 기술 최적화 연구를 통해 스마트 시설환경 실시간 시뮬레이션 기술 도입을 위한 기술적 과제를 풀어갈 것이다.
수리구조물로 인한 유황변화와 함께 기후변화로 기인하는 강우변동성 및 온도 증가는 수생태 전반에 악영향을 미치는 주요 인자로 작용하고 있다. 특히, 최근 가뭄으로 인한 유황감소 및 폭염 등으로 여름철 녹조의 발생 빈도 및 강도 증가가 지속적으로 증가하고 있다. 본 연구에서는 하천에서 계측되고 있는 Cyanobacteria 개체수를 기반으로 녹조발생 여부를 전망할 수 있는 모형을 개발하고자 한다. Cyanobacteria 개체수를 기준으로 녹조발생 여부를 판단할 수 있도록 기준값(threshold)을 설정하고 binary 형태로 시계열을 구성하였다. 이를 Bernoulli 모형에 적합하여 녹조 발생 여부를 판단할 수 있도록 모형을 개발하였다. 하천을 따라 나타나는 녹조는 시공간적으로 유사한 특성을 가지며, 이러한 점을 고려하여 여러 관측지점을 동시에 모델링하는 것이 모형의 효율성과 예측성 측면에서 유리하다. 본 연구에서는 낙동강을 따라 여러 녹조관측지점을 대상으로 동시에 모델링이 가능하도록 다변량 Bernoulli 모형 기반의 녹조 예측 모형을 제시하고 과거 자료를 대상으로 모형의 적합성을 평가하였다. 다양한 지표를 기준으로 교차검증을 수행하였으며, 기존 물리적 모델에 비해 모형의 예측성능 및 효율성 측면에서 우수성을 확인할 수 있었다.
하천으로 유입되는 오염물질은 유수의 흐름에 따라 이송되며 혼합된다. 이러한 오염물질의 해석을 위해서는 확산 또는 분산계수 산정이 필요하다. 오염물질의 거동과 관련된 실험적 연구는 방사선 동위원소와 형광성 물질을 이용하여 수행되어 왔으나, 추적자 실험은 많은 비용 및 인력을 요하며, 고정식으로 설치한 계측장비로부터 수집한 시계열 농도자료만을 이용하여 분석하기 때문에 공간적 분포에 대한 자료 취득은 어렵다는 한계가 있다. 하천의 오염물질을 모니터링하기 위해서는 공간을 이동하는 입자의 관점에서 물리량을 표현하는 Lagrangian 방식보다 특정 위치에서 물리량 변화를 표현하는 Eulerian 방식이 적합하다. 그러나 드론을 활용한 하천원격탐사 연구의 대부분은 이동식 플랫폼으로 활용되어 특정 시간에 공간적 분광특성의 분포 파악이 한정적이며, 동일 지점에서 분광특성의 시간적 변화를 파악할 수 없다. 따라서 본 연구에서는 기존의 면단위를 측정하는 이동식 플랫폼의 한계를 극복하고 하천 모니터링에 적합한 Eulerian 방식을 적용하기 위하여 CCTV 형태의 고정식 초분광촬영 플랫폼을 도입하였다. 본 연구에서는 하천으로 유입되는 오염물질의 거동을 분석하기 위하여 자연하천에서 형광성물질인 Rhodamine WT를 이용하여 추적자 실험을 수행하였으며, 접촉식 센서를 활용한 농도측정과 동시에 드론과 초분광센서를 활용하여 CCTV 형태의 고정식 초분광영상을 획득하였다. 실험결과 도출된 전통적인 방식의 분산계수 산정과 시공간 초분광영상을 활용한 분산계수 산정을 비교하여 오염물질 거동 분석에 초분광영상 활용의 가능성을 검토하였다. 본 연구에서 제시한 드론기반 시공간 초분광영상 기법을 교량이나 기타 하천구조물에 초분광 센서를 설치하여 CCTV형식으로 활용할 경우, 공단이나 하·폐수 처리장 등의 점오염원이 밀집해 있는 지역에 직접 설치하여 화학사고의 감지 및 오염물질의 유출 확인 및 조류, 부유사 등의 다양한 수질항목의 농도 변화 감지가 가능하고, 수심변화 감지로 장기적으로 활용할 경우 특정 지점에서의 하상변동 조사가 가능하다. 또한, 오염물질의 유출 사고 발생 등의 사람이 직접 접근이 불가능한 지역에 드론을 활용하여 초분광센서를 이용한 오염물질 감지가 가능할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.