• Title/Summary/Keyword: 동바리

Search Result 81, Processing Time 0.022 seconds

A Study on the Prevention of Collapse Disaster in a Form (거푸집 동바리 붕괴재해 예방대책 에 의한 연구)

  • Ham, Eun-Gu;Heo, Dai-Seong
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.313-314
    • /
    • 2022
  • 본 연구는 거푸집 동바리 붕괴재해 예방대책 마련하기 위해 실시되었으며 구조검토, 재료문제, 설치문제, 작업방법 불량 등으로 기존의 가설작업이 서류적으로 형식상의 안전점검 및 구조검토서를 반영한 현장관리로 재해발생이 빈번하게 이루어지고 있는점을 착안해 현장대응 방법을 변경하여 관리하는데 목적을 둔다.

  • PDF

Effects of Shore Stiffness and Concrete Cracking on Slab Construction Load II: Measurements and Comparisons (슬래브의 시공하중에 대한 동바리 강성 및 슬래브 균열의 영향 II: 계측 및 비교)

  • Hwang, Hyeon-Jong;Hong, Geon-Ho;Park, Hong-Gun;Kim, Yong-Nam;Kim, Jae-Yo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.51-58
    • /
    • 2010
  • In a companion paper, a simplified method for the evaluation of the slab construction load was developed. Unlike existing methods, the proposed method includes the effects of shore stiffness and concrete cracking on the construction load. In the present study, construction loads were measured in actual flat-plate slabs. For verification, the measured shore-forces were compared with the predictions by the proposed method and existing methods. Further, the proposed method was applied to a wall-slab structure, and the prediction results were compared with the measurements. The comparison results showed that the proposed method well predicted the construction loads, furthermore it gave better predictions than the existing methods did.

Investigations of Vulnerable Members and Collapse Risk for System Support Based on Damage Scenarios (손상시나리오 기반 시스템 동바리 취약부재 도출 및 붕괴 위험성 분석)

  • Park, Sae In;Park, Ju-Hyun;An, Hyojoon;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • In recent years, many construction projects become large and complicated, and construction accidents also steadily increase, which grows interest in the safety and maintenance during construction. Many of the construction accidents are related to temporary construction and structures, but the safety evaluation and management during construction are unclear and indefinite due to the short operating period and continuous change in the formation of the temporary structure. The system support, which is one of the temporary structures to support the pouring load of concrete, was proposed to easily install and dismantle members with connection parts pre-manufactured. The use of the system support is increasing to improve the safety of the temporary structure during construction. However, the system support, which consists of multiple members, still has uncertainties in connectivity between members and supports of vertical members. Therefore, this study analyzed the structure, load, and accident cases of the system support to define the damage scenarios for member connection, support condition, and lateral displacement. The decrease rate of the critical load was analyzed according to the damage scenarios based on the defined unit structure of the system support. In addition, this study provided vulnerable members for each damage scenario, which could induce instability of the temporary structures during design, construction, and operation of the structure.

Evaluation of the Rotational Stiffness of Connections between Vertical and Horizontal Members for the Highly Reusable System Supports (재사용율이 높은 시스템 동바리의 수직재와 수평재 연결부 회전강성 평가)

  • Ji-Sun Park;Tae-Hyeob Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.517-526
    • /
    • 2023
  • To avoid arbitrary design and excessive braces of system supports with high reusability in the field, this study aimed to propose connection conditions for the vertical and horizontal joints of the system supports based on performance evaluation. Disk-type and pocket-type connection materials, widely used in domestic construction sites, were selected for evaluation of rotational stiffness based on load directions(vertical and horizontal) and loading methods (monotonic and cyclic). Contrary to the current design standards specifying a rotational stiffness of "0" for connection materials, the experimental results revealed that, contrary to the current design standards specifying a rotational stiffness of "0" for connection materials, all specimens exhibited rotational stiffness values. The maximum rotational stiffness was observed to be 19.624 kNm/rad in specimens subjected to repeated loading in the vertical direction using disk-type connection materials.