• Title/Summary/Keyword: 돌고래

Search Result 39, Processing Time 0.026 seconds

Design and Manufacturing of Robotic Dolphin with Variable Stiffness Mechanism (가변강성 메커니즘을 적용한 로봇 돌고래 설계 및 제작)

  • Park, Yong-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.103-110
    • /
    • 2020
  • Bio-inspired underwater robots have been studied to improve the dynamic performance of fins, such as swimming speed and efficiency, which is the most basic performance. Among them, bio-inspired soft robots with a compliant tail fin can have high degrees of freedom. On the other hand, to improve the driving efficiency of the compliant fins, the stiffness of the tail fin should be changed with the driving frequency. Therefore, a new type of variable stiffness mechanism has been developed and verified. This study, which was inspired by the anatomy of a real dolphin, assessed a process of designing and manufacturing a robotic dolphin with a variable stiffness mechanism. By mimicking the vertebrae of a dolphin, the variable stiffness driving part was manufactured using subtractive and additive manufacturing. A driving tendon was placed considering the location of the tendon in the actual dolphin, and the additional tendon was installed to change its stiffness. A robotic dolphin was designed and manufactured in a streamlined shape, and the swimming speed was measured by varying the stiffness. When the stiffness of the tail fin was varied at the same driving frequency, the swimming speed and thrust changed by approximately 1.24 and 1.5 times, respectively.

Acoustic characteristics of pacific white-sided dolphin sound observed in the middle coast of Donghae (동해중부연안에서 관측된 흰줄무늬 돌고래 발생음의 음향 특성)

  • 김봉채
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.51-54
    • /
    • 1996
  • 동해 중부 연안(수심: 200 m)에서 해수 중 주위잡음을 측정하는 동안 태평양 흰줄무늬 돌고래(pacific white-sided dolphin, 학명: Lagenorhynchus obliquidens)의 발생음을 수신하였으며 그 음향 특성을 분석하였다. 그 결과 얻어진 결론을 요약하면 다음과 같다. 첫째, 돌고래 발생음의 파형은 임펄스의 형태로서 그것의 전체 길이는 0.25~60.50 ms였고, 처음에 음(-)의 방향으로 작은 진폭을 보였으며, 그 후 작은 진폭으로 빠르게 감쇠진동하고 있는 형태를 나타내었다. 둘째, 돌고래 발생음의 주파수 스펙트럼은 약 18~90kHz의 광범위한 성분을 포함하고 있었다. 셋째, 돌고래 발생음의 스펙트럼 레벨 피크는 주파수 범위 35~55 kHz에서 나타났으며, 이것은 돌고래의 발생음이 없는 경우 해수 중 주위잡음의 레벨에 비하여 약 30~40 dB 높게 나타났다.

  • PDF

Implementation of Underwater Entertainment Robots Based on Ubiquitous Sensor Networks (유비쿼터스 센서 네트워크에 기반한 엔터테인먼트용 수중 로봇의 구현)

  • Shin, Dae-Jung;Na, Seung-You;Kim, Jin-Young;Song, Min-Gyu
    • The KIPS Transactions:PartA
    • /
    • v.16A no.4
    • /
    • pp.255-262
    • /
    • 2009
  • We present an autonomous entertainment dolphin robot system based on ubiquitous sensor networks(USN). Generally, It is impossible to apply to USN and GPS in underwater bio-mimetic robots. But An Entertainment dolphin robot which presented in this paper operates on the water not underwater. Navigation of the underwater robot in a given area is based on GPS data and the acquired position information from deployed USN motes with emphasis on user interaction. Body structures, sensors and actuators, governing microcontroller boards, and swimming and interaction features are described for a typical entertainment dolphin robot. Actions of mouth-opening, tail splash or water blow through a spout hole are typical responses of interaction when touch sensors on the body detect users' demand. Dolphin robots should turn towards people who demand to interact with them, while swimming autonomously. The functions that are relevant to human-robot interaction as well as robot movement such as path control, obstacle detection and avoidance are managed by microcontrollers on the robot for autonomy. Distance errors are calibrated periodically by the known position data of the deployed USN motes.

A biomimetic communication method based on time shift using dolphin whistle (돌고래 휘슬을 이용한 지연시간 기반 생체 모방 통신 기법)

  • Lee, Hojun;Ahn, Jongmin;Kim, Yongcheol;Lee, Sangkug;Chung, Jaehak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.580-586
    • /
    • 2019
  • In this paper, we propose a biomimetic communication method using a dolphin whistle to covertly transmit the communication signal. A conventional CSS (Chirp Spread Spectrum) modulation technique divides dolphin whistle into several slots and modulates with up and down chirp signals. That causes the time-frequency characteristic difference between the original dolphin whistle and the camouflage performance is degraded. In this paper, we propose a delay based modulation scheme to eliminate distortions. The simulation results show that the bit error rate of the proposed method is better performance than that of the conventional CSS modulation method by about 3.5 dB to 8 dB. And the camouflage performance that evaluated through the cross correlation in the time-frequency domain is also better than that of the CSS modulation method.

OFDM based mimicking dolphin whistle for covert underwater communications (OFDM 기반 돌고래 휘슬음 모방 수중 은밀 통신 기법)

  • Lee, Hojun;Ahn, Jongmin;Kim, Yongcheol;Seol, Seunghwan;Kim, Wanjin;Chung, Jaehak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • This paper proposed an Orthogonal Frequency Division Multiplexing (OFDM) based biomimetic communication method using a dolphin whistle which covertly transmits communication signals to allies. The proposed method divides the dolphin whistle into several time slots corresponding to a number of OFDM symbols, and modulates the communication signal by mapping differential phase shift keying (DPSK) symbols into subcarriers that have the frequency bands of the dolphin whistle in each slot. The advantages of the proposed method are as follows: In the conventional Chirp Spread Spectrum (CSS) and Frequency Shift Keying (FSK) based biomimetic communication methods, the discontinuity of the frequency contour is large, but the proposed method can reduce the discontinuity. Even if the modulation order is increased, the degradation of the mimicking performance is small. The computer simulations demonstrate that the Bit Error Rate (BER) and mimicking performance of the proposed method are better performance than those of the conventional CSS and FSK.

Analysis of echolocation click signals of Indo-Pacific bottlenose dolphin (Tursiops aduncus) in Jeju Island (제주 남방큰돌고래 반향정위 클릭음 특성 분석)

  • Choi, Kang-Hoon;Yoon, Young Geul;Kim, Sunhyo;Kim, Hyeonsu;Choi, Jee Woong;Bae, Ho Seuk;Park, Kyeongju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.56-65
    • /
    • 2019
  • The Indo-Pacific bottlenose dolphins (Tursiops aduncus) are a toothed whale using echolocation clicks and have been studied continuously abroad. However, most studies on this whale's clicks were performed about captive animals and, in Korea, only the studies of the whistle sounds of this animal were done. In this paper, acoustic characteristics of clicks were analyzed about the free-ranging Indo-Pacific bottlenose dolphins living in the coast of the Jeju Island. Acoustic parameters such as signal duration, 1st and 2nd peak frequency, 3 dB and 10 dB bandwidth for acoustic characteristics were calculated and compared with those of Australian species. As a result, the signal durations had average of $38{\mu}s$ and most clicks were within range of $20{\mu}s-60{\mu}s$. The two types of bandwidths showed both narrowband and broadband characteristics, and bimodal signal characteristics were confirmed through the 1st peak frequencies(average of $96kHz{\pm}18kHz$) and the 2nd peak frequencies(average of $69kHz{\pm}19kHz$).

The Waveform and Spectrum analysis of Tursiops truncatus (Bottlenose Dolphin) Sonar Signals on the Show at the Aquarium (쇼 학습시 병코돌고래 명음의 주파수 스펙트럼 분석)

  • 윤분도;신형일;이장욱;황두진;박태건
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.2
    • /
    • pp.117-125
    • /
    • 2000
  • The waveform and spectrum analysis of Tursiops truncatus(bottlenose dolphin) sonar signals were carried out on the basis of data collected during the dolphin show at the aquarium of Cheju Pacificland from October 1998 to February 1999. When greeting to audience, the pulse width, peak frequency and spectrum level from the five dolphins'sonar signals were 3.0ms, 4.54kHz and 125.6dB, respectively. At the time of warm-up just before the show, their figures were 5.0㎳, 5.24kHz and 127.0dB, respectively. During the performance of dolphins, with singing, peak frequency ranged 3.28∼5.78kHz and spectrum level ranged 137.0∼142.0dB. With playing ring, pulse width, peak frequency and spectrum level were 7.0㎳, 2.54kHz and 135.9dB, and when playing the ball, the values were 9.0㎳, 2.78kHz and 135.2dB, respectively. The values determined from the five dolphins during jump-up out of water were : pulse width 2.0㎳, peak frequency 4.50kHz and spectrum level 126.8dB. When they responded to trainer's instructions, the values were 2.25㎳, 248kHz and 148.7dB, respectively, and greeting to audience, the peak frequency and spectrum level were 5.84kHz and 122.5dB. During swimming under water, peak frequency and spectrum level were determined to be 10.10kHz and 126.8dB. It was found that there exited close consistencies in pulse width, frequency distribution and spectrum level between whistle sounds and dolphin's sonar signals. Accordingly, the dolphins can be easily trained by using whistle sound based on the results obtained from the waveform and spectrum of the dolphin's sonar signals.

  • PDF