The purpose of this study is to research the effects of English reading strategies on English reading comprehension by Korean college students. Reading strategy use was assessed through Oxford's self-report questionnaire in reading strategies. This study has three research questions. The first question was to investigate some reading strategies used by college students. The second question was to investigate the differences in reading strategies between two groups in gender. The third question was to investigate the differences in reading strategies of three college student groups according to their English proficiency estimated by reading scores. Some major findings of this study are as follows. First, college English learners use memory strategies most frequently of the six strategies, while using metacognitive strategies least frequently. Second, there exists a significant difference in reading strategies between the gender group. Third, there also exists a significant difference in reading strategies among the three groups divided according to English proficiency. This study shows that students' reading ability can be strengthened and motivated by some reading strategies in reading practice. It also means that it is necessary for English teachers to take into consideration the reading strategies suitable for the students in their reading classes.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.47-52
/
2021
최근 지문을 바탕으로 답을 추론하는 연구들이 많이 이루어지고 있으며, 대표적으로 기계 독해 연구가 존재하고 관련 데이터 셋 또한 여러 가지가 공개되어 있다. 그러나 한국의 대학수학능력시험 국어 영역과 같은 복잡한 구조의 문제에 대한 고차원적인 문제 해결 능력을 요구하는 데이터 셋은 거의 존재하지 않는다. 이로 인해 고차원적인 독해 문제를 해결하기 위한 연구가 활발히 이루어지고 있지 않으며, 인공지능 모델의 독해 능력에 대한 성능 향상이 제한적이다. 기존의 입력 구조가 단조로운 독해 문제에 대한 모델로는 복잡한 구조의 독해 문제에 적용하기가 쉽지 않으며, 이를 해결하기 위해서는 새로운 모델 훈련 방법이 필요하다. 이에 복잡한 구조의 고차원적인 독해 문제에도 대응이 가능하도록 하는 모델 훈련 방법을 제안하고자 한다. 더불어 3가지의 데이터 증강 기법을 제안함으로써 고차원 독해 문제 데이터 셋의 부족 문제 또한 해소하고자 한다.
1999년이래 순차적으로 수행되어지고 있는 항공사진 DB구축사업은 일반적으로 정확도가 검증되어진 항공사진전용독취기를 사용하여 항공사진영상 DB를 구축하고있으나, 일부기관에서는 시중에서 사용되는 일반자동독취기를 이용하여 항공사진영상 DB를 구축하기도 한다. 이에 본 연구에서는 항공사진전용독취기와 일반자동독취기를 정확도를 비교분석함으로서 항공영상 DB구축시 문제점과 타당성을 제시하고자 한다. 본 논문에서는 일반자동독취기의 활용 타당성을 분석하기 위하여 표정해석과 2차제품 제작을 통한 정확도를 항공사진전용독취기와 비교분석하였고, 자동독취기 검증 시스템을 개발하여 연구에 이용된 자동독취기를 검증함으로써 항공영상 DB구축에 있어서 필수적인 장비인 자동독취기의 정확도를 검증하였다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.151-154
/
2020
대명사 참조해결은 문서 내에 등장하는 대명사와 이에 대응되는 선행사를 찾는 자연어처리 태스크이다. 기계 독해는 문단과 질문을 입력 받아 질문에 해당하는 알맞은 정답을 문단 내에서 찾아내는 태스크이며, 최근에는 주로 BERT 기반의 모델이 가장 좋은 성능을 보이고 있다. 이러한 BERT 기반 모델의 성공에 따라, 최근 여러 연구에서 자연어처리 태스크를 기계 독해 문제로 변환하여 해결하는 연구들이 진행되고 있다. 본 논문에서는 최근 여러 자연어처리에서 뛰어난 성능을 보이고 있는 BERT 기반 기계 독해 모델을 이용하여 한국어 대명사 참조해결 연구를 진행하였다. 사전 학습 된 기계 독해 모델을 사용하여 한국어 대명사 참조해결 데이터로 fine-tuning하여 실험한 결과, 개발셋에서 EM 78.51%, F1 84.79%의 성능을 보였고, 평가셋에서 EM 70.78%, F1 80.19%의 성능을 보였다.
Han, Sangdo;Yu, Hwanjo;Lee, Gary Geunbae;Myaeng, Sung-Hyon
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.440-442
/
2019
본 논문은 딥 러닝 기반의 독해 기술이 풀지 못하는 문제를 분류해내는 기술에 관한 것이다. 해당 연구에서는 독해 데이터 및 시스템 결과 분석을 통해 시스템이 풀지 못하는 문제들의 특징을 도출해내고, 이에 알맞은 전략들을 시도해 보았다. 분석 결과에 따른 시도들은 각 목적에 부합하는 결과를 나타냈으며, 특히 독해 기술의 특징에 기반한 방법론이 효과적이었다. 본 논문에서 제안하는 방법은 본문과 질의 간 유사도 행렬을 활용하는 것으로, 기존의 독해 기술이 본문과 질의의 유사도를 활용하여 정답을 내는 것에 영감을 얻었다.
Park, Cheoneum;Lee, Changki;Hong, Sulyn;Hwang, Yigyu;Yoo, Taejoon;Kim, Hyunki
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.35-40
/
2017
기계 독해(Machine reading comprehension)는 주어진 문맥을 이해하고, 질문에 적합한 답을 문맥 내에서 찾는 문제이다. Simple Recurrent Unit (SRU)은 Gated Recurrent Unit (GRU)등과 같이 neural gate를 이용하여 Recurrent Neural Network (RNN)에서 발생하는 vanishing gradient problem을 해결하고, gate 입력에서 이전 hidden state를 제거하여 GRU보다 속도를 향상시킨 모델이며, Self-matching Network는 R-Net 모델에서 사용된 것으로, 자기 자신의 RNN sequence에 대하여 어텐션 가중치 (attention weight)를 계산하여 비슷한 의미 문맥 정보를 볼 수 있기 때문에 상호참조해결과 유사한 효과를 볼 수 있다. 본 논문에서는 한국어 기계 독해 데이터 셋을 구축하고, 여러 층의 SRU를 이용한 Encoder에 Self-matching layer를 추가한 $S^2$-Net 모델을 제안한다. 실험 결과, 본 논문에서 제안한 $S^2$-Net 모델이 한국어 기계 독해 데이터 셋에서 EM 65.84%, F1 78.98%의 성능을 보였다.
Park, Cheoneum;Lee, Changki;Hong, Sulyn;Hwang, Yigyu;Yoo, Taejoon;Kim, Hyunki
한국어정보학회:학술대회논문집
/
2017.10a
/
pp.35-40
/
2017
기계 독해(Machine reading comprehension)는 주어진 문맥을 이해하고, 질문에 적합한 답을 문맥 내에서 찾는 문제이다. Simple Recurrent Unit (SRU)은 Gated Recurrent Unit (GRU)등과 같이 neural gate를 이용하여 Recurrent Neural Network (RNN)에서 발생하는 vanishing gradient problem을 해결하고, gate 입력에서 이전 hidden state를 제거하여 GRU보다 속도를 향상시킨 모델이며, Self-matching Network는 R-Net 모델에서 사용된 것으로, 자기 자신의 RNN sequence에 대하여 어텐션 가중치 (attention weight)를 계산하여 비슷한 의미 문맥 정보를 볼 수 있기 때문에 상호참조해결과 유사한 효과를 볼 수 있다. 본 논문에서는 한국어 기계 독해 데이터 셋을 구축하고, 여러 층의 SRU를 이용한 Encoder에 Self-matching layer를 추가한 $S^2$-Net 모델을 제안한다. 실험 결과, 본 논문에서 제안한 $S^2$-Net 모델이 한국어 기계 독해 데이터 셋에서 EM 65.84%, F1 78.98%의 성능을 보였다.
Proceedings of the Korea Information Processing Society Conference
/
2019.10a
/
pp.922-925
/
2019
기계 독해 기술은 기계가 주어진 비정형 문서 내에서 사용자의 질문을 이해하여 답변을 하는 기술로써, 챗봇이나 스마트 스피커 등, 사용자 질의응답 분야에서 핵심이 되는 기술 중 하나이다. 최근 딥러닝을 이용한 기학습 언어모델과 전이학습을 통해 사람의 기계 독해 능력을 뛰어넘는 방법론들이 제시되었다. 하지만 이러한 방식은 사람이 인식하는 질의응답 방법과 달리, 개체가 가지는 의미론(Semantic) 관점보다는 토큰 단위로 분리된 개체의 형태(Syntactic)와 등장하는 문맥(Context)에 의존해 기계 독해를 수행하였다. 본 논문에서는 기존의 높은 성능을 나타내던 기학습 언어모델에 대규모 지식그래프에 등장하는 개체 정보를 함께 학습함으로써, 의미학적 정보를 반영하는 방법을 제시한다. 본 논문이 제시하는 방법을 통해 기존 방법보다 기계 독해 분야에서 높은 성능향상 결과를 얻을 수 있었다.
The purpose of this study is to suggest the effects of schema activation on reading comprehension. The subject of a sample survey was a 36 student experimental group and a 32 student control group, total 68 students at third grade class of C Middle School in Gwangju. Students ability to read English in the two groups were almost the same through, which was shown by pre-test administered before the beginning of the experiment. As a pre-reading activity, the experimental group was showed the pictures and vocabularies related to the text before reading. The other control group did Grammar Translation Method about text. The data needed for this study was obtained by the questionnaires with 25 questions about the English reading. The data analyzing method was t-test through the statistics program SPSS 12.0. The result of this study is as follows : First, the experimental group got a more meaningful score than the control group at the test. Second, pre-reading activities for providing prior knowledge of the text were affected by the student's English proficiency, peculiarly more effective on low level student than advanced level. Studying English reading through schema activation led the students to be present in classes with interests, so the experimental group showed more academic accomplishments than the control group.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.