• Title/Summary/Keyword: 독립영양탈질

Search Result 30, Processing Time 0.025 seconds

A Use of Heterotrophic Denitrification for the Supply of Alkalinity during Sulfur-utilizing Autotrophic Denitrification (황-이용 독립영양 탈질시 알칼리도 저감을 위한 종속영양 탈질의 이용방안)

  • Lee, Dong-Uk;Park, Jae-Hong;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.1995-2005
    • /
    • 2000
  • The use of heterotrophic denitrification as an alternative method for supplying alkalinity during sulfur-utilizing autotrophic denitrification was evaluated by examining the effects of external carbon source (both type and concentration) and HRT on denitrification efficiency. Concentrations of $NO_3{^-}-N$ and $COD_{Cr}$ of nitrified landfill leachate used for experiment were 700-900mg/L and 900-2500mg/L. respectively, All experiment was conducted with sulfur packed bed reactors (SPBRs) which were operated at $35^{\circ}C$. The fraction of $NO_3{^-}-N$ removed by heterotrophic denitrification ($HDNR_{fraction}$) to balance the alkalinity consumption by autotrophic denitrification varied with the type of external carbon source. When methanol and sodium acetate was added at theoretical HDNRfraction value. 100% denitrification was achieved without alkalinity addition. However, glucose and molasses require $HDNR_{fraction}$ value greater than theoretical value for complete denitrification. The EBCT and volumetric loading rate at which 100% denitrification efficiency could be achieved were 6.76 h and $2.84kg-NO_3{^-}-N/m^3{\cdot}d$, respectively, based on the fact that 100% denitrification occurred within the bottom 11.5 cm layer of the SPBR. The maximum nitrogen removal rate occurred with 89% removal efficiency at loading rate of $5.05kg-NO_3{^-}-N/m^3{\cdot}d$. However, at short EBCT, clogging of SPBR was observed with excess growth of heterotrophic denitrifiers. This problem may be eliminated by back washing or by separating of heterotrophic denitrification from sulfur-utilizing denitrification.

  • PDF

Development of Biological Denitrification Process using Sulfur for the Wastewater Containing Low BOD (저농도 BOD함유 폐수의 황(S)을 이용한 생물학적 탈질공정 개발 (SPAD 공정))

  • 광주과학기술원, 한국과학기술원;한국과학기술원;동명산업
    • Environmental engineer
    • /
    • v.19 s.186
    • /
    • pp.66-73
    • /
    • 2002
  • 우리나라 하수의 특성이 유기물 농도가 질소 농도에 비하여 매우 낮기 때문에 외국의 종속영양 탈질 공법을 그대로 적용하기가 힘들며 적용한다 할지라도 외부탄소원을 넣어야 하므로 경제적인 처리는 불가능하다. 산업폐수의 경우에 있어서도 유기물농도가 질소농도에 비하여 낮은 폐수의 경우는 값비싼 외부탄소원을 넣어주어야 한다. 따라서 폐수 특성에 맞는 효율적이고 경제적인 질소화합물 제거 기술의 개발은 불가피하다. 따라서 종속영양탈질공정의 경제성 문제 및 기존의 황탈

  • PDF

Development of Biological Denitrification Process Using Sulfur for the Wastewater Containing Low BOD (저농도 BOD함유 폐수의 황(S)을 이용한 생물학적 탈질공정 개발 (SPAD 공정))

  • 김인수;오상은;범민수;이성택;이창수;김민수
    • Environmental engineer
    • /
    • s.183
    • /
    • pp.70-77
    • /
    • 2001
  • 우리나라 하수의 특성이 유기물 농도가 질소농도에 비하여 매우 낮기 때문에 외국의 종속영양 탈질 공법을 그대로 적용하기가 힘들며 적용한다 할지라도 외부탄소원을 넣어야 하므로 경제적인 처리는 불가능하다. 산업폐수의 경우에 있어서도 유기물농도가 질소농도에 비하여 낮은 폐수의 경우는 값비싼 외부탄소원을 넣어주어야 한다. 따라서 폐수 특성에 맞는 효율적이고 경제적인 질소 화합물 제거 기술의 개발은 불가피하다. 따라서 종속영양탈질공정의 경제성 문제 및 기존의 황탈

  • PDF

Microbial Adaptation in a Nitrate Removal Column Reactor Using Sulfur-Based Autotrophic Denitrification (질산성 질소 제거를 위한 독립영양 황탈질 칼럼에서의 미생물 적응에 관한 연구)

  • Shin, Do-Yun;Moon, Hee-Sun;Kim, Jae-Young;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.2
    • /
    • pp.38-44
    • /
    • 2006
  • Two sulfur-based column reactors inoculated with a bacterial consortium containing autotrophic denitrifiers were operated for 100 and 500 days, respectively and nitrate removal efficiency and the adaptation of microbial communities in the columns were monitored with column depths and time. For better understanding the adaptation phenomenon, molecular techniques including 16S rDNA sequencing and DGGE analysis were employed. Although both columns showed about 99% of nitrate removal efficiency heterotrophic denitrifiers such as Cenibacterium arsenioxidans and Geothrix fermentans were found to a significant portion at the initial stage of the 100-day reactor operation. However, as operation time increased, an autotrophic denitrifier Thiobacillus denitrificans became a dominant bacterial species throughout the column. A similar trend was also observed in the 500-day column. In addition, nitrate removal efficiencies were different with column depths and thus bacterial species with different metabolic activities were found at the corresponding depths. Especially, T. denitrificans was successfully adapted and colonized at the bottom parts of the columns where most nitrate was reduced.

Isolation and Characterization of Sulfur-oxidizing Denitrifying Bacteria Utilizing Thiosulfate as an Electron Donor (황(thiosulfate)을 이용하는 탈질 미생물의 분리 및 특성 파악)

  • Oh, Sang-Eun;Joo, Jin-Ho;Yang, Jae E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.409-414
    • /
    • 2006
  • Sulfur-oxidizing bacteria were enumerated and isolated from a steady-state anaerobic master culture reactor (MCR) operated for over six months under a semi-continuous mode and nitrate-limiting conditions using thiosulfate as an electron donor. Most are Gram-negative bacteria, which have sizes up to 12 m. Strains AD1 and AD2 were isolated from the plate count agar (PCA), and strains BD1 and BD2 from the solid thiosulfate/nitrate medium. Based on the morphological, physiological, FAME and 16S rDNA sequence analyses, the two dominant strains, AD1 and AD2, were identified as Paracoccus denitrificans and Paracoccus versutus (formerly Thiobacillus versutus), respectively. From the physiological results, glucose was assimilated by both strains AD1 and AD2. Heterotrophic growth of strains AD1 and AD2 could be a more efficient way of obtaining a greater amount of biomass for use as an inoculum. Even though facultative autotrophic bacteria grow under heterotrophic conditions, autotrophic denitrification would not be reduced.

Autotrophic Nitrite Denitrification Using Sulfur Particles for Treatment of Wastewaters with Low C/N Ratios (Batch Tests) (C/N비가 낮은 하.폐수에서 황입자를 이용한 아질산성질소 탈질 연구(회분식 실험))

  • Yoon, Seung-Joon;Kang, Woo-Chang;Bae, Woo-Keun;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.851-856
    • /
    • 2010
  • A sulfur utilizing nitrite denitrification process could be placed after the shortcut biological nitrogen removal (SBNR) process. In this study, removal of nitrite using sulfur oxidizing denitrifier was characterized in batch tests with granular elemental sulfur as an electron donor and nitrite as an electro acceptor. At sufficient alkalinity, initial nitrite nitrogen concentration of 100 mg/L was almost completely reduced in the batch reactor within a incubation time of 22 h. Sulfate production with nitrite was 4.8 g ${SO_4}^{2-}/g$ ${NO_2}^-$-N, while with nitrate 13.5 g ${SO_4}^{2-}/g$ ${NO_3}^-$-N. Under the conditions of low alkalinity, nitrite removal was over 95% but 15 h of a lag phase was shown. For nitrate with low alkalinity, no denitrification occurred. Sulfate production was 2.6 g ${SO_4}^{2-}/g$ ${NO_2}^-$-N and alkalinity consumption was 1.2 g $CaCO_3/g$ ${NO_2}^-$. The concentration range of organics used in this experiment did not inhibit autotrophic denitrification at both low and high alkalinity. This kind of method may solve the problems of autotrophic nitrate denitrification, i.e. high sulfate production and alkalinity deficiency, to some extent.

A study on characteristics analysis of autotrophic denitrification microbial community using sulfur granule (황입자를 이용한 독립영양탈질 미생물 군집분포 특성분석에 관한 연구)

  • Yoon, Su-chul;Joo, Jae-young;Nam, Duck-hyun;Park, Chul-hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.673-679
    • /
    • 2008
  • The representative microorganism of autotrophic denitrification using sulfur granule, oxidizes the reduction from S and performs denitrification by reducing $NO_3{^-}-N$ to $N_2$ gas. The sampling of autotrophic denitrification microorganisms has been performed from foreshore sludge, condensed sludge, and active sludge, but the analysis of autotrophic denitrification microbial community characteristics has been lacking. Based on the separation and identification of each sample using the PCR and DGGE methodologies, many types of sulfuric microorganisms and autotrophic denitrification microorganisms were found.

Nitrite Removal by Autotrophic Denitrification Using Sulfur Particles (황입자를 이용한 독립영양탈질에서의 아질산성질소 탈질 조건 탐색)

  • Kang, Woo-Chang;Oh, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.221-226
    • /
    • 2010
  • Swine wastewater contains high amounts of organic matter and nutrients (nitrogen and phosphorus). The biological nitrogen removal can be achieved by nitrification and denitrification processes. Nitrification-denitrification can be performed via nitrite which is called as the short-cut process. This Short-cut process saves up to 25% of oxygen and 40% of external carbon during nitrification and denitrification. In this study, the batch tests were conducted to assess the different parameters for the nitrite sulfur utilizing denitrification, such as alkalinity, temperature, initial nitrite concentration, and dissolved oxygen. The experimental results showed that the nitrite removal efficiency of the reactor was found to be over 95% under the optimum condition ($30^{\circ}C$ and sufficient alkalinity). Autotrophic nitrate denitrification was inhibited at low alkalinity condition showing only 10% removal efficiency, while nitrite denitrification was achieved over 95%. The nitrite removal rates were found similar at both $20^{\circ}C$ and $30^{\circ}C$. In addition, nitrite removal efficiencies were inhibited by increasing oxygen concentration, but sulfate concentration increased due to sulfur oxidation under an aerobic condition. Sulfate production and alkalinity consumption were decreased with nitrite compared those with nitrate.

Alkalinity Supplement using Sea Shell for Sulfur-utilizing Autotrophic Denitrification (황-이용 독립영양 탈질에서의 패각을 이용한 알칼리도 공급)

  • Byun, Jung-Sup;Bum, Bong-Su;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1777-1787
    • /
    • 2000
  • The purpose of this study was to select an effective and economical alkali source for sulfur-utilizing autotrophic denitrification. Tests on acid neutralization and denitrification at various alkali/sulfur mixing ratios were performed for charcoal, briquette ashes, sea shell, and limestone. The results of the experiments showed that sea shell was the most effective alkali source because it could provide more surface area than limestone, and the optimal alkali/sulfur mixing ratio was 1/1(V/V). In a sulfur/sea shell packed bed reactor, the denitrification efficiency was above 90% up to a loading rate of 116 g $NO_3{^-}-N/m^3-day$. but the denitrification efficiency deteriorated to 48% at the loading rate of 145 g $NO_3{^-}-N/m^3-day$. The average $SO_4{^{2-}}$ generation per g of $NO_3{^-}-N$ removed was 7.02 g, which is lower than the theoretical value of 7.54 g. Denitrification and sulfate generation appeared to be a first-order and a zero-order reaction with a reaction rate constant of 0.146 /hr and -53.1 mg/L-hr, respectively. According to nitrogen mass balance, 71~109%, with an average of 90%, of the removed nitrogen was recovered as $N_2$ gas.

  • PDF