• Title/Summary/Keyword: 도청 공격

Search Result 154, Processing Time 0.018 seconds

Monitoring system for packet analysis on Wi-Fi environment (Wi-Fi 환경에서 패킷 분석을 위한 모니터링 시스템)

  • Seo, Hee-Suk;Kim, Hee-Wan;Ahn, Woo-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.227-234
    • /
    • 2011
  • Many technologies for wireless internet are increasing as more and more laptop computers, net books, smart phone and other terminals, which provide wireless network, are created. IEEE 802.11 is computer wireless network technology that used in small area, called wireless LAN or Wi-Fi. IEEE 802.11 is a set of standards for implementing wireless local area network (WLAN) computer communication in the 2.4, 3.6 and 5 GHz frequency bands. They are created and maintained by the IEEE LAN/MAN Standards Committee (IEEE 802). AP (Access Point) is installed at cafes and public places providing wireless environment. It is more convenient to use wireless internet, however, It can be seen easily around us and possible to communicate with AP. IEEE 802.11 has many vulnerability, such as packet manipulation and information disclosure, so we should pay more attention when using IEEE 802.11. Therefore this paper developing monitoring system which can find out AP and Stations that connect with it, and capturing AP's information to find out vulnerability. This paper suggests monitoring system which traffic analysis in wireless environment.

Secure Mutual Authentication Protocol for RFID System without Online Back-End-Database (온라인 백-엔드-데이터베이스가 없는 안전한 RFID 상호 인증 프로토콜)

  • Won, Tae-Youn;Yu, Young-Jun;Chun, Ji-Young;Byun, Jin-Wook;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.1
    • /
    • pp.63-72
    • /
    • 2010
  • RFID is one of useful identification technology in ubiquitous environments which can be a replacement of bar code. RFID is basically consisted of tag, reader, which is for perception of the tag, and back-end-database for saving the information of tags. Although the usage of mobile readers in cellular phone or PDA increases, related studies are not enough to be secure for practical environments. There are many factors for using mobile leaders, instead of static leaders. In mobile reader environments, before constructing the secure protocol, we must consider these problems: 1) easy to lose the mobile reader 2) hard to keep the connection with back-end-database because of communication obstacle, the limitation of communication range, and so on. To find the solution against those problems, Han et al. suggest RFID mutual authentication protocol without back-end-database environment. However Han et al.'s protocol is able to be traced tag location by using eavesdropping, spoofing, and replay attack. Passive tag based on low cost is required lots of communication unsuitably. Hence, we analyze some vulnerabilities of Han et al.'s protocol and suggest RFID mutual authentication protocol without online back-end-database in aspect of efficiency and security.

Study on security method for scenario-based smartphone vulnerability (시나리오 기반의 스마트폰 취약점에 대한 보안방안 연구)

  • Lee, Jaeho;Son, Minwoo;Lee, Sang-Joon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.6
    • /
    • pp.835-844
    • /
    • 2018
  • Recently, as the number of smartphone users has been increasing worldwide, various services such as electronic payment, internet use, and financial settlement are being used as a smartphone. In addition, researches for home appliance control and automobile control using smartphone are conducted. As such, smartphone users can enjoy a more convenient life, but by hacking smartphones, tapping texts and conversations on smartphones, tracking location through spy apps, DDoS attacks using smartphones, and malicious apps When a message is received at a specific telephone number when using a micropayment, the corresponding text message is transmitted to a remote server, thereby increasing the risk of leakage of personal information and the like. Therefore, in this paper, we define the risk factors of the smartphone that are caused by the internal and external environmental, physical, contents (apps) of the smartphone through the smartphone that we use in real life, We propose a method to check vulnerability of smartphone security solution such as CC evaluation and the most effective response technique for each risk of smartphone by defining the technique.

A Performance Comparison of the Mobile Agent Model with the Client-Server Model under Security Conditions (보안 서비스를 고려한 이동 에이전트 모델과 클라이언트-서버 모델의 성능 비교)

  • Han, Seung-Wan;Jeong, Ki-Moon;Park, Seung-Bae;Lim, Hyeong-Seok
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.286-298
    • /
    • 2002
  • The Remote Procedure Call(RPC) has been traditionally used for Inter Process Communication(IPC) among precesses in distributed computing environment. As distributed applications have been complicated more and more, the Mobile Agent paradigm for IPC is emerged. Because there are some paradigms for IPC, researches to evaluate and compare the performance of each paradigm are issued recently. But the performance models used in the previous research did not reflect real distributed computing environment correctly, because they did not consider the evacuation elements for providing security services. Since real distributed environment is open, it is very vulnerable to a variety of attacks. In order to execute applications securely in distributed computing environment, security services which protect applications and information against the attacks must be considered. In this paper, we evaluate and compare the performance of the Remote Procedure Call with that of the Mobile Agent in IPC paradigms. We examine security services to execute applications securely, and propose new performance models considering those services. We design performance models, which describe information retrieval system through N database services, using Petri Net. We compare the performance of two paradigms by assigning numerical values to parameters and measuring the execution time of two paradigms. In this paper, the comparison of two performance models with security services for secure communication shows the results that the execution time of the Remote Procedure Call performance model is sharply increased because of many communications with the high cryptography mechanism between hosts, and that the execution time of the Mobile Agent model is gradually increased because the Mobile Agent paradigm can reduce the quantity of the communications between hosts.