• Title/Summary/Keyword: 도착지기반 최적경로탐색

Search Result 14, Processing Time 0.022 seconds

Finding the One-to-One Optimum Path Considering User's Route Perception Characteristics of Origin and Destination (Focused on the Origin-Based Formulation and Algorithm) (출발지와 도착지의 경로인지특성을 반영한 One-to-One 최적경로탐색 (출발지기반 수식 및 알고리즘을 중심으로))

  • Shin, Seong-Il;Sohn, Kee-Min;Cho, Chong-Suk;Cho, Tcheol-Woong;Kim, Won-Keun
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.99-110
    • /
    • 2005
  • Total travel cost of route which connects origin with destination (O-D) is consist of the total sum of link travel cost and route perception cost. If the link perception cost is different according to the origin and destination, optimal route search has limitation to reflect the actual condition by route enumeration problem. The purpose of this study is to propose optimal route searching formulation and algorithm which is enable to reflect different link perception cost by each route, not only avoid the enumeration problem between origin and destination. This method defines minimum unit of route as a link and finally compares routes using link unit costs. The proposed method considers the perception travel cost at both origin and destination in optimal route searching process, while conventional models refect the perception cost only at origin. However this two-way searching algorithm is still not able to guarantee optimum solution. To overcome this problem, this study proposed an orign based optimal route searching method which was developed based on destination based optimal perception route tree. This study investigates whether proposed numerical formulas and algorithms are able to reflect route perception behavior reflected the feature of origin and destination in a real traffic network by the example research including the diversity of route information for the surrounding area and the perception cost for the road hierarchy.

A Route Information Provision Strategy in ATIS Considering User's Route Perception of Origin and Destination (ATIS에서 기종점의 경로인지특성을 반영한 경로정보제공방안)

  • Cho Chong-Suk;Sohn Kee-Min;Shin Seong-Il
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.3 s.8
    • /
    • pp.9-22
    • /
    • 2005
  • Route travel cost in transportation networks consists of actual route travel cost and route perception cost. Since the route perception cost is differently perceived according to each origin and each destination, route search has limitation to reflect the note perception cost due to route enumeration problem. Thus, currently employed advanced traveller information systems (ATIS) have considered only actual route travel cost for providing route information. This study proposes an optimal and a K-route searching algorithm which are able to reflect the route perception cost but encompass route enumeration problem. For this purpose, this research defines the minimum nit of route as a link by adopting the link label technique in route searching, therefore the comparison of two adjacent links which can be finally expanded the comparison of two routes. In order to reflect the characteristics of route perception in real situation, an optimal shortest cost path algorithm that both the forward search from the origin and the backward search from the destination can be simultaneously processed is proposed. The proposed algorithm is applied for finding K number of shortest routes with an entire-path-deletion-type of K shortest route algorithm.

  • PDF

A Deterministic User Optimal Traffic Assignment Model with Route Perception Characteristics of Origins and Destinations for Advanced Traveler Information System (ATIS 체계 구축을 위한 출발지와 도착지의 경로 인지 특성 반영 확정적 사용자 최적통행배정 모형)

  • Shin, Seong-Il;Sohn, Kee-Min;Lee, Chang-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.1
    • /
    • pp.10-21
    • /
    • 2008
  • User travel behavior is based on the existence of complete traffic information in deterministic user optimal principle by Wardrop(1952). According to deterministic user optimal principle, users choose the optimal route from origin to destination and they change their routes arbitrarily in order to minimize travel cost. In this principle, users only consider travel time as a factor to take their routes. However, user behavior is not determined by only travel time in actuality. Namely, the models that reflect only travel time as a route choice factor could give irrational travel behavior results. Therefore, the model is necessary that considers various factors including travel time, transportation networks structure and traffic information. In this research, more realistic deterministic optimal traffic assignment model is proposed in the way of route recognizance behavior. This model assumes that when users decide their routes, they consider many factors such as travel time, road condition and traffic information. In addition, route recognizance attributes is reflected in this suggested model by forward searching method and backward searching method with numerical formulas and algorithms.

  • PDF

A Design of Optimal Path Search Algorithm using Information of Orientation (방향성 정보를 이용한 최적 경로 탐색 알고리즘의 설계)

  • Kim Jin-Deog;Lee Hyun-Seop;Lee Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.454-461
    • /
    • 2005
  • Car navigation system which is killer application fuses map management techniques into CPS techniques. Even if the existing navigation systems are designed for the shortest path, they are not able to cope efficiently with the change of the traffic flow and the bottleneck point of road. Therefore, it is necessary to find out shortest path algorithm based on time instead of distance which takes traffic information into consideration. In this paper, we propose a optimal path search algorithm based on the traffic information. More precisely. we introduce the system architecture for finding out optimal paths, and the limitations of the existing shortest path search algorithm are also analyzed. And then, we propose a new algorithm for finding out optimal path to make good use of the orientation of the collected traffic information.

A Link-Based Label Correcting Multi-Objective Shortest Paths Algorithm in Multi-Modal Transit Networks (복합대중교통망의 링크표지갱신 다목적 경로탐색)

  • Lee, Mee-Young;Kim, Hyung-Chul;Park, Dong-Joo;Shin, Seong-Il
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.1
    • /
    • pp.127-135
    • /
    • 2008
  • Generally, optimum shortest path algorithms adopt single attribute objective among several attributes such as travel time, travel cost, travel fare and travel distance. On the other hand, multi-objective shortest path algorithms find the shortest paths in consideration with multi-objectives. Up to recently, the most of all researches about multi-objective shortest paths are proceeded only in single transportation mode networks. Although, there are some papers about multi-objective shortest paths with multi-modal transportation networks, they did not consider transfer problems in the optimal solution level. In particular, dynamic programming method was not dealt in multi-objective shortest path problems in multi-modal transportation networks. In this study, we propose a multi-objective shortest path algorithm including dynamic programming in order to find optimal solution in multi-modal transportation networks. That algorithm is based on two-objective node-based label correcting algorithm proposed by Skriver and Andersen in 2000 and transfer can be reflected without network expansion in this paper. In addition, we use non-dominated paths and tree sets as labels in order to improve effectiveness of searching non-dominated paths. We also classifies path finding attributes into transfer and link travel attribute in limited transit networks. Lastly, the calculation process of proposed algorithm is checked by computer programming in a small-scaled multi-modal transportation network.

A Link-Label Based Node-to-Link Optimal Path Algorithm Considering Non Additive Path Cost (비가산성 경로비용을 반영한 링크표지기반 Node-to-Link 최적경로탐색)

  • Lee, Mee Young;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.91-99
    • /
    • 2019
  • Existing node-to-node based optimal path searching is built on the assumption that all destination nodes can be arrived at from an origin node. However, the recent appearance of the adaptive path search algorithm has meant that the optimal path solution cannot be derived in node-to-node path search. In order to reflect transportation data at the links in real-time, the necessity of the node-to-link (or link-to-node; NL) problem is being recognized. This research assumes existence of a network with link-label and non-additive path costs as a solution to the node-to-link optimal path problem. At the intersections in which the link-label has a turn penalty, the network retains its shape. Non-additive path cost requires that M-similar paths be enumerated so that the ideal path can be ascertained. In this, the research proposes direction deletion and turn restriction so that regulation of the loop in the link-label entry-link-based network transformation method will ensure that an optimal solution is derived up until the final link. Using this method on a case study shows that the proposed method derives the optimal solution through learning. The research concludes by bringing to light the necessity of verification in large-scale networks.

Optimal Traffic Information (최적교통정보)

  • Hong, You-Sik;Park, Jong-Kug
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.76-84
    • /
    • 2003
  • Now days, It is based on GIS and GPS, it can search for the shortest path and estimation of arrival time by using the internet and cell phone to driver. But, even though good car navigation system does not create which is the shortest path when there average vehicle speed is 10 -20 Km. Therefore In order to reduce vehicle waiting time and average vehicle speed, we suggest optimal green time algorithm using fuzzy adaptive control, where there are different traffic intersection length and lane. In this paper, it will be able to forecast the optimal traffic information, estimation of destination arrival time, under construction road, and dangerous road using internet.

A Shortest Path Routing Algorithm using a Modified Hopfield Neural Network (수정된 홉필드 신경망을 이용한 최단 경로 라우팅 알고리즘)

  • Ahn, Chang-Wook;Ramakrishna, R.S.;Choi, In-Chan;Kang, Chung-Gu
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.386-396
    • /
    • 2002
  • This paper presents a neural network-based near-optimal routing algorithm. It employs a modified Hopfield Neural Network (MHNN) as a means to solve the shortest path problem. It uses every piece of information that is available at the peripheral neurons in addition to the highly correlated information that is available at the local neuron. Consequently, every neuron converges speedily and optimally to a stable state. The convergence is faster than what is usually found in algorithms that employ conventional Hopfield neural networks. Computer simulations support the indicated claims. The results are relatively independent of network topology for almost all source-destination pairs, which nay be useful for implementing the routing algorithms appropriate to multi -hop packet radio networks with time-varying network topology.

A Logit Type of Public Transit Trip Assignment Model Considering Stepwise Transfer Coefficients (Stepwise 환승계수를 고려한 Logit 유형 대중교통통행배정모형)

  • SHIN, Seongil;BAIK, Namcheol
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.6
    • /
    • pp.570-579
    • /
    • 2016
  • This study proposes a concept of Stepwise Transfer Coefficient(STC) which implies greater transfer cost with increasing the number of transfers. Thus, the public transport information system provides the choice sets of travel routes by the consideration of not only transportation time but also the optimum number of transfers. However, path choice problems that involve STC are found to include non additive cost, which requires additional route enumeration works. Discussions on route enumeration in actual transportation networks is very complicated, thereby warranting a theoretical examination of route search considering STC. From these points of view, this study results in a probability based transit trip assignment model including STC. This research also uses incoming link based entire route deletion method. The entire route deletion method proposed herein simplifies construction of an aggregation of possible routes by theoretically supporting the process of enumeration of the different routes from origin to destination. Conclusively, the STC reflected route based logit model is proposed as a public transportation transit trip assignment model.

A User Optimer Traffic Assignment Model Reflecting Route Perceived Cost (경로인지비용을 반영한 사용자최적통행배정모형)

  • Lee, Mi-Yeong;Baek, Nam-Cheol;Mun, Byeong-Seop;Gang, Won-Ui
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.2
    • /
    • pp.117-130
    • /
    • 2005
  • In both deteministic user Optimal Traffic Assignment Model (UOTAM) and stochastic UOTAM, travel time, which is a major ccriterion for traffic loading over transportation network, is defined by the sum of link travel time and turn delay at intersections. In this assignment method, drivers actual route perception processes and choice behaviors, which can become main explanatory factors, are not sufficiently considered: therefore may result in biased traffic loading. Even though there have been some efforts in Stochastic UOTAM for reflecting drivers' route perception cost by assuming cumulative distribution function of link travel time, it has not been fundamental fruitions, but some trials based on the unreasonable assumptions of Probit model of truncated travel time distribution function and Logit model of independency of inter-link congestion. The critical reason why deterministic UOTAM have not been able to reflect route perception cost is that the route perception cost has each different value according to each origin, destination, and path connection the origin and destination. Therefore in order to find the optimum route between OD pair, route enumeration problem that all routes connecting an OD pair must be compared is encountered, and it is the critical reason causing computational failure because uncountable number of path may be enumerated as the scale of transportation network become bigger. The purpose of this study is to propose a method to enable UOTAM to reflect route perception cost without route enumeration between an O-D pair. For this purpose, this study defines a link as a least definition of path. Thus since each link can be treated as a path, in two links searching process of the link label based optimum path algorithm, the route enumeration between OD pair can be reduced the scale of finding optimum path to all links. The computational burden of this method is no more than link label based optimum path algorithm. Each different perception cost is embedded as a quantitative value generated by comparing the sub-path from the origin to the searching link and the searched link.