• Title/Summary/Keyword: 도식법

Search Result 82, Processing Time 0.024 seconds

The Proteinase Distributed in the Intestinal Organs of Fish 2. Characterization of the Three Alkaline Proteinases from the Pyloric Caeca of Mackerel, Scomber japonicus (어류의 장기조직에 분포하는 단백질분해효소에 관한 연구 2. 고등어 유문수조직중에 분포하는 3종 알칼리성 단백질분해효소의 특성)

  • KIM Hyeung-Rak;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.6
    • /
    • pp.547-557
    • /
    • 1986
  • The characteristics of the three alkaline proteinases, Enz. A, B and C, from the pyloric caeca of mackerel have been investigated. The optimum condition for the activity of the Enz. A, B and C was pH 9.4, 9.8 and 9.8 at $45^{\circ}C$ for $2\%$ casein solution, and was pH 9.2 10.2 and 9.8 at $45^{\circ}C$ for $5\%$ hemoglobin denatured by urea, respectively. Enz. A, B and C by heat treatment at $50^{\circ}C$ for 5 min were inactivated 90, 33 and $37\%$, respectively, over the original activity. The reaction rate of the three alkaline proteinases was constant to the reaction time to 40 min in the reaction condition of $2{\mu}g/ml$ of enzyme concentration and $2\%$ casein solution. The reaction rate equation and Km value against casein substrate determined by the method of Lineweaver and Burk were: Enz. A, Y=3.6X and $Km=5.0{\times}10^{-3}\%$; Enz. B, Y=6.0X and $Km=1.0{\times}10^{-3}\%$; Enz. C, Y=4.2X and $Km=3.6{\times}10^{-3}\%$. The three alkaline proteinases were inactivated by $Ag^+$ and $Hg^{2+}$, but activated by $Mn^{2+},\;Sn^{2+}\;and\;Pb^{2+}$, Enz. B and C were remarkably inhibited by the soybean trypsin inhibitor. Molecular weight of Enz. A, B and C determined by SDS-polyacrylamide gel electrophoresis and Sephadex G-100 gel filtration was in the range of $27,500{\pm}2,500,\;20,500{\pm}1,500\;and\;15,250{\pm}250$, respectively.

  • PDF

Estimation of Surface fCO2 in the Southwest East Sea using Machine Learning Techniques (기계학습법을 이용한 동해 남서부해역의 표층 이산화탄소분압(fCO2) 추정)

  • HAHM, DOSHIK;PARK, SOYEONA;CHOI, SANG-HWA;KANG, DONG-JIN;RHO, TAEKEUN;LEE, TONGSUP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.3
    • /
    • pp.375-388
    • /
    • 2019
  • Accurate evaluation of sea-to-air $CO_2$ flux and its variability is crucial information to the understanding of global carbon cycle and the prediction of atmospheric $CO_2$ concentration. $fCO_2$ observations are sparse in space and time in the East Sea. In this study, we derived high resolution time series of surface $fCO_2$ values in the southwest East Sea, by feeding sea surface temperature (SST), salinity (SSS), chlorophyll-a (CHL), and mixed layer depth (MLD) values, from either satellite-observations or numerical model outputs, to three machine learning models. The root mean square error of the best performing model, a Random Forest (RF) model, was $7.1{\mu}atm$. Important parameters in predicting $fCO_2$ in the RF model were SST and SSS along with time information; CHL and MLD were much less important than the other parameters. The net $CO_2$ flux in the southwest East Sea, calculated from the $fCO_2$ predicted by the RF model, was $-0.76{\pm}1.15mol\;m^{-2}yr^{-1}$, close to the lower bound of the previous estimates in the range of $-0.66{\sim}-2.47mol\;m^{-2}yr^{-1}$. The time series of $fCO_2$ predicted by the RF model showed a significant variation even in a short time interval of a week. For accurate evaluation of the $CO_2$ flux in the Ulleung Basin, it is necessary to conduct high resolution in situ observations in spring when $fCO_2$ changes rapidly.