Neural Network(NN) is known to be suitable for forecasting corporate bankruptcy because of discriminant capability. Bandkruptcy prediction on NN by now has mostly been studied based on financial indices at specific point of time. However, the financial profile of corporates fluctuates within a certain range with the elapse of time. Besides, we need a lot of data of different bankrupt types in order to apply NN for better bankruptcy prediction. Therefore, We have decided to focus on textile and clothing industries for bankruptcy prediction with limited data. One part of the collected data was used for training and calibration, and the other was used for verification. The model makes a learning with extended data from financial indices at specific point of time. The trained model has been tested and we could get a high hitting ratio relatively.
Neural Network(NN) is known to be suitable for forecasting corporate bankruptcy because of discriminant capability. Bandkruptcy prediction on NN by now has mostly been studied based on financial indices at specific point of time. However, the financial profile of corporates fluctuates within a certain range with the elapse of time. Besides, we need a lot of data of different bankrupt types in order to apply NN for better bankruptcy prediction. Therefore, We have decided to focus on textile and clothing industries for bankruptcy prediction with limited data. One part of the collected data was used for training and calibration, and the other was used for verification. The model makes a learning with extended data from financial indices at specific point of time. The trained model has been tested and we could get a high hitting ratio relatively.
This paper is concerned with analysing the bankruptcy prediction power of three models: Multivariate Discriminant Analysis(MDA ), Logit Analysis, Neural Network. The after-crisis bankrupted companies were limited to the research data and the listed companies belonging to manufacturing industry was limited to the research data so as to improve prediction accuracy and validity of the model. In order to assure meaningful bankruptcy prediction, training data and testing data were not extracted within the corresponding period. The result is that prediction accuracy of neural network model is more excellent than that of logit analysis and MDA model when considering that execution of testing data was followed by execution of training data.
In this paper, four different data mining techniques, two neural networks and two statistical modeling techniques, are compared in terms of prediction accuracy in the context of bankruptcy prediction. In business setting, how to accurately detect the condition of a firm has been an important event in the literature. In neural networks, Backpropagation (BP) network and the Kohonen self-organizing feature map, are selected and compared each other while in statistical modeling techniques, discriminant analysis and logistic regression are also performed to provide performance benchmarks for the neural network experiment. The findings suggest that the BP network is a better choice among the data mining tools compared. This paper also identified some distinctive characteristics of Kohonen self-organizing feature map.
우리나라 코스닥 시장은 1996년 처음 생긴 이래 상당한 양적 성장은 해왔으나 투자자의 두터운 신뢰를 받지 못하는 실정이다. 건전한 기업을 발굴하여 육성하고 코스닥 시장이 투자자들에게 신뢰를 주기 위해서는 코스닥 상장기업의 정확한 가치평가와 기업 생존 가능성 평가는 매우 중요하지만 코스닥 기업을 대상으로 실패위험을 분석한 논문은 많지 않은 실정이다. 본 연구에서는 코스닥 상장 시 기업의 실패위험 결정요인을 조사하고 이 실패위험이 주가에 반영되는지 분석하였다. 신규상장 시 실패위험 결정요인은 신규상장기업의 특성인 주관등록사와 회계감사인의 명성, 공모가와 공모규모, 기업의 나이 등을 고려하여 분석하였다. 또한 신규상장 시 실패위험이 상장 후 주가성과와 관련되는지 분석하였다. 표본은 코스닥 상장 폐지된 기업 중 인터넷 기업을 제외하고 부실과 관련된 86개 실패 기업과 실패기업과 같은 산업에 속하는 569개 건전기업을 선정하여 연구에 사용하였다. 실패위험 결정요인 분석에는 로짓모형을 이용하였다. 연구결과는 신규상장 시 실패위험 결정요인은 신규상장기업의 특성인 공모규모, 회계감사인의 명성, 기업의 나이 등이 유의한 영향을 주는 것으로 나타났다. 또한 재무레버리지는 실패위험에 유의한 영향을 주는 변수이지만 선행연구에서 유의한 변수로 지적된 기업규모나 수익성 변수는 실패위험에 유의한 영향을 주지 않는 것으로 나타나 신규상장 시 실패위험 분석에서는 신규상장기업의 특성을 반영하는 모형이 유효하다고 볼 수 있다. 신규상장시 실패위험과 상장 후 주가성과와의 관계 분석에서는 유의한 음(-)의 관련성이 나타나 비 인터넷기업의 실패위험이 주가에 반영된다고 해석할 수 있다. 코스닥 신규상장기업의 생존가능성이 낮은 편이며 정부의 각종 지원을 받는 벤처기업이 실패하는 경우 투자자들에게 극심한 손해를 끼칠 수 있고 나아가 경제에 악영향을 미칠 수 있기 때문에 본 연구의 결과는 정부의 규제당국이나 신용분석을 담당하는 실무자에게 상당한 도움이 될 것으로 생각된다.
타 산업들과의 연계성이 강한 건설업체가 도산할 경우 타 산업시장의 경기악화를 초래할 수 있어, 시장 환경 변화에 따른 건설업체의 부실화 예측모형 연구가 중요하게 다뤄지고 있다. 하지만 건설업체 부실화 예측에 앞서 부실화에 기인하는 요소에 관한 연구가 선행되어야 함에도 불구하고 이와 같은 영향 변수들에 대한 연구가 부족한 실정이다. 이에 본 논문에서는 건설업체 포트폴리오의 큰 비중을 차지하는 주택시장 변화가 규모별 건설업체의 부실화에 미치는 영향을 벡터오차수정모형을 통해 분석하고자 한다. 이에 건설업체를 규모별로 2011년 시공능력평가순위 50위권 기업 중 상위 10개와 하위 10개로 구분하였으며, 각 업체의 부실화를 나타내는 예상부도확률을 KMV 모형을 통해 측정하였다. 주택시장의 변화를 대리하는 변수로 2001년부터 2010년까지의 주택매매가격지수, 주택전세가격지수, 전세매매가격비율을 활용하였다. KMV모형을 활용하여 규모별 건설업체의 예상부도확률을 산출한 결과 선험적으로 인지하고 있듯이 상위 10개의 대규모 건설업체들이 상대적으로 규모가 작은 건설업체에 비해 경영상태가 양호한 것을 확인 할 수 있었다. 또한 벡타오차수정모형을 구성, 충격반응분석을 수행한 결과 주택시장 경기변동에 따라 대규모 업체의 부실화 정도가 중소 건설업체에 비해 더 심각함을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.