• 제목/요약/키워드: 도산기업예측

검색결과 26건 처리시간 0.017초

한정된 데이터 하에서 인공신경망을 이용한 기업도산예측 - 섬유 및 의류산업을 중심으로 - (Bankruptcy Prediction Based on Limited Data of Artificial Neural Network - in Textiles and Clothing Industries -)

  • 피종호;김승권
    • 경영과학
    • /
    • 제14권2호
    • /
    • pp.91-111
    • /
    • 1997
  • Neural Network(NN) is known to be suitable for forecasting corporate bankruptcy because of discriminant capability. Bandkruptcy prediction on NN by now has mostly been studied based on financial indices at specific point of time. However, the financial profile of corporates fluctuates within a certain range with the elapse of time. Besides, we need a lot of data of different bankrupt types in order to apply NN for better bankruptcy prediction. Therefore, We have decided to focus on textile and clothing industries for bankruptcy prediction with limited data. One part of the collected data was used for training and calibration, and the other was used for verification. The model makes a learning with extended data from financial indices at specific point of time. The trained model has been tested and we could get a high hitting ratio relatively.

  • PDF

한정된 데이터 하에서 인공신경망을 이용한 기업도산예측 - 섬유 및 의류산업을 중심으로 - (Bankruptcy Prediction Based on Limited Data of Artificial Neural Network - in Textiles and Colthing Industries -)

  • 피종호;김승권
    • 한국경영과학회지
    • /
    • 제14권2호
    • /
    • pp.91-91
    • /
    • 1989
  • Neural Network(NN) is known to be suitable for forecasting corporate bankruptcy because of discriminant capability. Bandkruptcy prediction on NN by now has mostly been studied based on financial indices at specific point of time. However, the financial profile of corporates fluctuates within a certain range with the elapse of time. Besides, we need a lot of data of different bankrupt types in order to apply NN for better bankruptcy prediction. Therefore, We have decided to focus on textile and clothing industries for bankruptcy prediction with limited data. One part of the collected data was used for training and calibration, and the other was used for verification. The model makes a learning with extended data from financial indices at specific point of time. The trained model has been tested and we could get a high hitting ratio relatively.

인공신경망을 이용한 기업도산 예측 - IMF후 국내 상장회사를 중심으로 - (A Neural Network Model for Bankruptcy Prediction -Domestic KSE listed Bankrupted Companies after the foreign exchange crisis in 1997)

  • 정유석;이현수;채영일;서영호
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 2004년도 품질경영모델을 통한 가치 창출
    • /
    • pp.655-673
    • /
    • 2004
  • This paper is concerned with analysing the bankruptcy prediction power of three models: Multivariate Discriminant Analysis(MDA ), Logit Analysis, Neural Network. The after-crisis bankrupted companies were limited to the research data and the listed companies belonging to manufacturing industry was limited to the research data so as to improve prediction accuracy and validity of the model. In order to assure meaningful bankruptcy prediction, training data and testing data were not extracted within the corresponding period. The result is that prediction accuracy of neural network model is more excellent than that of logit analysis and MDA model when considering that execution of testing data was followed by execution of training data.

  • PDF

데이터 마이닝 기법의 기업도산예측 실증분석 (A Study of Data Mining Techniques in Bankruptcy Prediction)

  • Lee, Kidong
    • 한국경영과학회지
    • /
    • 제28권2호
    • /
    • pp.105-127
    • /
    • 2003
  • In this paper, four different data mining techniques, two neural networks and two statistical modeling techniques, are compared in terms of prediction accuracy in the context of bankruptcy prediction. In business setting, how to accurately detect the condition of a firm has been an important event in the literature. In neural networks, Backpropagation (BP) network and the Kohonen self-organizing feature map, are selected and compared each other while in statistical modeling techniques, discriminant analysis and logistic regression are also performed to provide performance benchmarks for the neural network experiment. The findings suggest that the BP network is a better choice among the data mining tools compared. This paper also identified some distinctive characteristics of Kohonen self-organizing feature map.

코스닥 상장 시 실패위험 결정요인과 주가반응에 관한 연구 (Determinants of IPO Failure Risk and Price Response in Kosdaq)

  • 오성배;남삼현;이화득
    • 벤처창업연구
    • /
    • 제5권4호
    • /
    • pp.1-34
    • /
    • 2010
  • 우리나라 코스닥 시장은 1996년 처음 생긴 이래 상당한 양적 성장은 해왔으나 투자자의 두터운 신뢰를 받지 못하는 실정이다. 건전한 기업을 발굴하여 육성하고 코스닥 시장이 투자자들에게 신뢰를 주기 위해서는 코스닥 상장기업의 정확한 가치평가와 기업 생존 가능성 평가는 매우 중요하지만 코스닥 기업을 대상으로 실패위험을 분석한 논문은 많지 않은 실정이다. 본 연구에서는 코스닥 상장 시 기업의 실패위험 결정요인을 조사하고 이 실패위험이 주가에 반영되는지 분석하였다. 신규상장 시 실패위험 결정요인은 신규상장기업의 특성인 주관등록사와 회계감사인의 명성, 공모가와 공모규모, 기업의 나이 등을 고려하여 분석하였다. 또한 신규상장 시 실패위험이 상장 후 주가성과와 관련되는지 분석하였다. 표본은 코스닥 상장 폐지된 기업 중 인터넷 기업을 제외하고 부실과 관련된 86개 실패 기업과 실패기업과 같은 산업에 속하는 569개 건전기업을 선정하여 연구에 사용하였다. 실패위험 결정요인 분석에는 로짓모형을 이용하였다. 연구결과는 신규상장 시 실패위험 결정요인은 신규상장기업의 특성인 공모규모, 회계감사인의 명성, 기업의 나이 등이 유의한 영향을 주는 것으로 나타났다. 또한 재무레버리지는 실패위험에 유의한 영향을 주는 변수이지만 선행연구에서 유의한 변수로 지적된 기업규모나 수익성 변수는 실패위험에 유의한 영향을 주지 않는 것으로 나타나 신규상장 시 실패위험 분석에서는 신규상장기업의 특성을 반영하는 모형이 유효하다고 볼 수 있다. 신규상장시 실패위험과 상장 후 주가성과와의 관계 분석에서는 유의한 음(-)의 관련성이 나타나 비 인터넷기업의 실패위험이 주가에 반영된다고 해석할 수 있다. 코스닥 신규상장기업의 생존가능성이 낮은 편이며 정부의 각종 지원을 받는 벤처기업이 실패하는 경우 투자자들에게 극심한 손해를 끼칠 수 있고 나아가 경제에 악영향을 미칠 수 있기 때문에 본 연구의 결과는 정부의 규제당국이나 신용분석을 담당하는 실무자에게 상당한 도움이 될 것으로 생각된다.

  • PDF

주택시장 변화가 규모별 건설업체 부실화에 미치는 영향 분석 (Influence of Housing Market Changes on Construction Company Insolvency)

  • 장호면
    • 한국산학기술학회논문지
    • /
    • 제15권5호
    • /
    • pp.3260-3269
    • /
    • 2014
  • 타 산업들과의 연계성이 강한 건설업체가 도산할 경우 타 산업시장의 경기악화를 초래할 수 있어, 시장 환경 변화에 따른 건설업체의 부실화 예측모형 연구가 중요하게 다뤄지고 있다. 하지만 건설업체 부실화 예측에 앞서 부실화에 기인하는 요소에 관한 연구가 선행되어야 함에도 불구하고 이와 같은 영향 변수들에 대한 연구가 부족한 실정이다. 이에 본 논문에서는 건설업체 포트폴리오의 큰 비중을 차지하는 주택시장 변화가 규모별 건설업체의 부실화에 미치는 영향을 벡터오차수정모형을 통해 분석하고자 한다. 이에 건설업체를 규모별로 2011년 시공능력평가순위 50위권 기업 중 상위 10개와 하위 10개로 구분하였으며, 각 업체의 부실화를 나타내는 예상부도확률을 KMV 모형을 통해 측정하였다. 주택시장의 변화를 대리하는 변수로 2001년부터 2010년까지의 주택매매가격지수, 주택전세가격지수, 전세매매가격비율을 활용하였다. KMV모형을 활용하여 규모별 건설업체의 예상부도확률을 산출한 결과 선험적으로 인지하고 있듯이 상위 10개의 대규모 건설업체들이 상대적으로 규모가 작은 건설업체에 비해 경영상태가 양호한 것을 확인 할 수 있었다. 또한 벡타오차수정모형을 구성, 충격반응분석을 수행한 결과 주택시장 경기변동에 따라 대규모 업체의 부실화 정도가 중소 건설업체에 비해 더 심각함을 확인할 수 있었다.