Proceedings of the Korea Information Processing Society Conference
/
2024.05a
/
pp.888-890
/
2024
딥러닝의 발전으로 인공지능의 실세계 응용이 다방면으로 확대되고 있다. 하지만 학습에 사용된 소스 도메인 데이터와 테스트에 사용된 타겟 도메인 데이터 간의 분포 차이로 인해 모델의 성능이 크게 저하될 수 있다. 이를 극복하기 위해 도메인 적응 방법이 제안되었으나, 소스 도메인 데이터에 접근할 수 없는 경우 적용에 한계가 있다. 이에 대응하여 소스 데이터가 필요 없는 소스-프리 도메인 적응 기술과 실시간으로 적응하는 테스트 시간 적응 방법이 연구되고 있다. 본 논문은 최신 소스-프리 도메인 적응 및 테스트 시간 적응 방법의 동향을 파악하고 각 방법론의 기술적 특징을 분석하고자 한다.
Annual Conference on Human and Language Technology
/
2015.10a
/
pp.246-249
/
2015
기계학습 방법에 기반한 자연어 분석은 학습 데이터가 필요하다. 학습 데이터가 구축된 소스 도메인이 아닌 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 10% 정도 성능 하락이 발생한다. 본 논문은 기존 도메인 적응 기술을 이용하여 도메인이 다르고, 문장의 형태도 다를 경우에 도메인 적응 알고리즘을 적용하여, 질의응답 시스템에서 필요한 질문 문장 의미역 인식을 위해, 소규모의 질문 문장에 대한 학습 데이터 구축만으로도 한국어 질문 문장에 대해 성능을 향상시키기 위한 방법을 제안한다. 한국어 의미역 인식 기술에 prior 모델을 제안한다. 제안하는 방법은 실험결과 소스 도메인 데이터만 사용한 실험보다 9.42, 소스와 타겟 도메인 데이터를 단순 합하여 학습한 경우보다 2.64의 성능향상을 보였다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.17-18
/
2023
비지도형 도메인 적응(UDA)에 대한 최근 연구는 도메인 적응에 대한 설명 및 전이 가능한 특징을 풀어 내기 위해 적대적 학습에 의존한다. 그러나 기존 방법에는 대상 도메인의 클래스 인식(class-aware) 정보를 고려하지 않고는 잠재 공간의 구별 가능성을 완전히 보장할 수 없다는 것과 소스 및 대상 도메인의 샘플만으로는 잠재 공간에서 도메인 불변(domain- invariant) 특성을 추출하기에 부족하다는 두 가지 문제가 있다고 알려져 있다. 본 논문에서는 기존 알려진 UDA의 도메인 적응시 발생되는 문제를 해결하기 위해 Adversarial Discriminative Domain Adaptation(ADDA)에서 mixup을 활용해 신경망의 로버스트네스를 향상시키는 것을 확인하였다.
A large number of current language processing systems use a part-of-speech tagger for preprocessing. Most language processing systems required a tagger with the highest possible accuracy. Specially, the use of domain-specific advantages has become a hot issue in machine translation community to improve the translation quality. This paper addresses a method for customizing an HMM or LHMM based English tagger from general domain to specific domain. The proposed method is to semi-automatically customize the output and transition probabilities of HMM or LHMM using domain-specific raw corpus. Through the experiments customizing to Patent domain, our LHMM tagger adapted by the proposed method shows the word tagging accuracy of 98.87% and the sentence tagging accuracy of 78.5%. Also, compared with the general tagger, our tagger improved the word tagging accuracy of 2.24% (ERR: 66.4%) and the sentence tagging accuracy of 41.0% (ERR: 65.6%).
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.415-418
/
2019
기계독해 모델에 새로운 도메인을 적용하기 위해서는 도메인에 맞는 데이터가 필요하다. 그러나 추가 데이터 구축은 많은 비용이 발생한다. 사람이 직접 구축한 데이터 없이 적용하기 위해서는 자동 추가 데이터 확보, 도메인 적응의 문제를 해결해야한다. 추가 데이터 확보의 경우 번역, 질의 생성의 방법으로 연구가 진행되었다. 그러나 도메인 적응을 위해서는 새로운 정답 유형에 대한 질의가 필요하며 이를 위해서는 정답 후보 추출, 추출된 정답 후보로 질의를 생성해야한다. 본 논문에서는 이러한 문제를 해결하기 위해 듀얼 포인터 네트워크 기반 정답 후보 추출 모델로 정답 후보를 추출하고, 포인터 제너레이터 기반 질의 생성 모델로 새로운 데이터를 생성하는 방법을 제안한다. 실험 결과 추가 데이터 확보의 경우 KorQuAD, 경제, 금융 도메인의 데이터에서 모두 성능 향상을 보였으며, 도메인 적응 실험에서도 새로운 도메인의 문맥만을 이용해 데이터를 생성했을 때 기존 도메인과 다른 도메인에서 모두 기계독해 성능 향상을 보였다.
Supervised learning based on deep learning has made a leap forward in various application fields. However, many supervised learning methods work under the common assumption that training and test data are extracted from the same distribution. If it deviates from this constraint, the deep learning network trained in the training domain is highly likely to deteriorate rapidly in the test domain due to the distribution difference between domains. Domain adaptation is a methodology of transfer learning that trains a deep learning network to make successful inferences in a label-poor test domain (i.e., target domain) based on learned knowledge of a labeled-rich training domain (i.e., source domain). In particular, the unsupervised domain adaptation technique deals with the domain adaptation problem by assuming that only image data without labels in the target domain can be accessed. In this paper, we explore the unsupervised domain adaptation techniques.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.394-397
/
2012
멀티미디어 장치와 사용자의 욕구가 다양해짐에 따라 이를 충족시키기 위하여 이미지 크기는 장치에서 지원하는 해상도나 사용자의 욕구에 맞게 조정되어야 한다. 이미지 업샘플링 방법은 크게 공간 도메인과 주파수 도메인에서 수행될 수 있다. 일반적으로 공간 도메인에서의 업샘플링 방법은 주파수 도메인의 업샘플링에 비해 상대적으로 주관적인 화질 측면에서 좋은 성능을 나타내지만 객관적인 성능이 낮다. 반대로 주파수 도메인에서의 업샘플링 방법은 객관적인 화질이 좋고 주관적인 화질 측면에서 상대적으로 성능이 낮게 나타난다. 본 논문에서는 공간 도메인과 주파수 도메인에서의 업샘플링 방법을 블록의 특성에 따라 적응적으로 업샘플링 방법을 선택하는 알고리듬을 제안한다. 제안하는 방법은 객관적 성능 뿐 아니라 주관적 성능까지도 향상 시킬 수 있다. 실험 결과를 통해 제안하는 알고리듬이 기존의 알고리듬에 비해 PSNR 측면에서 0.87dB~1.15dB 증가하고, 주관적 화질도 향상됨을 알 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.109-112
/
2020
사람 재인식을 수행하기 위해서 많은 연구들이 진행되어 좋은 결과들을 보였다 그러나 이 결과들은 라벨이 있는 도메인에서의 지도 학습으로 얻은 결과들이었다. 라벨이 없는 도메인에서의 사람 재인식의 성능은 아직 많이 부족한 상태이다. 사람 재인식을 수행하고자 하는 목표 도메인에 반해 주어진 소스 도메인에서는 라벨이 풍부하다. 지금까지의 논문에서는 소스 도메인에서의 사람 이미지를 목표 도메인의 이미지처럼 만들어서 소스 도메인에서 높은 성능을 보이는 사람 재인식기를 목표 도메인에서도 잘 동작하도록 학습하는 방법들이 주를 이루었다. 하지만 이 방법에서는 소스 도메인의 사람 이미지를 목표 도메인의 이미지와 비슷하게 만들기만하고 사람의 신원에 대한 일관성을 유지시키지는 못하였다. 본 논문에서는 비지도 도메인 적응 사람 재인식을 수행하기 위해 클러스터 일관성(cluster consistency)을 유지하는 기법을 제안한다. 제안한 방법은 사람의 신원에 대한 일관성을 유지시켜서 사람 재인식의 성능을 높인다.
Developing a high-performance Semantic Role Labeling (SRL) system for a domain requires manually annotated training data of large size in the same domain. However, such SRL training data of sufficient size is available only for a few domains. Performances of Korean SRL are degraded by almost 15% or more, when it is directly applied to another domain with relatively small training data. This paper proposes two techniques to minimize performance degradation in the domain transfer. First, a domain adaptation algorithm for Korean SRL is proposed which is based on the prior model that is one of domain adaptation paradigms. Secondly, we proposed to use simplified features related to morphological and syntactic tags, when using small-sized target domain data to suppress the problem of data sparseness. Other domain adaptation techniques were experimentally compared to our techniques in this paper, where news and Wikipedia were used as the sources and target domains, respectively. It was observed that the highest performance is achieved when our two techniques were applied together. In our system's performance, F1 score of 64.3% was considered to be 2.4~3.1% higher than the methods from other research.
Annual Conference on Human and Language Technology
/
2014.10a
/
pp.56-60
/
2014
기계학습 방법에 기반한 자연어 분석은 학습 데이터가 필요하다. 학습 데이터가 구축된 소스 도메인이 아닌 다른 도메인에 적용할 경우 한국어 의미역 인식 기술은 15% 정도 성능 하락이 발생한다. 본 논문은 이러한 다른 도메인에 적용시 발생하는 성능 하락 현상을 극복하기 위해서 기존의 소스 도메인 학습 데이터를 활용하여, 소규모의 타겟 도메인 학습 데이터 구축만으로도 성능 하락을 최소화하기 위해 한국어 의미역 인식 기술에 prior 모델을 제안하며 기존의 도메인 적응 알고리즘과 비교 실험하였다. 추가적으로 학습 데이터에 사용되는 자질 중에서, 형태소 태그와 구문 태그의 자질 값을 기존보다 단순하게 적용하여 성능의 변화를 실험하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.