An ontology consists of a set and definition of concepts that represents the characteristics of a given domain and relationship between the elements. To reduce time-consuming and cost in building ontology, this paper proposes a semiautomatic method to build a domain ontology using the results of text analysis. To do this, we Propose a terminology processing method and use the extracted concepts and semantic relations between them to build ontology. An experiment domain is selected by the pharmacy field and the built ontology is applied to document retrieval. In order to represent usefulness for retrieving a document using the hierarchical relations in ontology, we compared a typical keyword based retrieval method with an ontology based retrieval method, which uses related information in an ontology for a related feedback. As a result, the latter shows the improvement of precision and recall by $4.97\%$ and $0.78\%$ respectively.
Proceedings of the Korean Information Science Society Conference
/
2012.06c
/
pp.92-94
/
2012
시맨틱 웹은 인터넷 환경에서 지식을 표현하고 공유하기 위한 표준 기술들의 집합체이며, 온톨로지는 특정 지식 도메인의 용어와 용어 사이의 관계를 정의한 지식 표현체계이다. 본 연구에서는 시소러스를 SKOS 기반 온톨로지로 모델링하여 LOD로 공개하는 실제적 방법을 제시한다. 시소러스의 어휘 용어 체계와 의미 관계를 분석하고, 이 분석 결과를 활용하여 변환 방식을 정의한 후, SKOS 온톨로지를 생성하며, 그 결과를 DataHub에 등록함으로써 LOD에 공개된다. 과학기술 분야의 한 중 일 대역어와 유사어, 관계어 등의 시소러스를 SKOS 온톨로지로 변환한 데이터는 http://thedatahub.org/dataset/steak에서 확인할 수 있다.
Annual Conference on Human and Language Technology
/
2007.10a
/
pp.233-240
/
2007
온톨로지 구축에서 클래스간 관계 설정은 중요한 부분이다. 본 논문에서는 클래스간 상 하위 관계 외의 관계 설정을 위한 클래스간 관계 자동 정의를 목적으로 의존구문분석의 (주어, 용언) (목적어, 용언) 쌍들을 추출하고, 이렇게 추출된 데이터를 이용하여 용언들을 클러스터링 하는 방법을 제안한다. 도메인 전문 코퍼스 데이터 희귀성 문제를 해결하고자, 웹검색을 결합한 방식을 선택하여 도메인 온톨로지 구축 클래스간 관계 자동 설정에 대한 방법론을 제시한다.
Proceedings of the Korean Statistical Society Conference
/
2004.11a
/
pp.41-48
/
2004
2002년 10월 유럽통계협회는 품질지수개발을 위해 협회소속국가들이 연합하여 특별연구팀을 발족시켰다. 이 팀의 주목적은 유럽통계협회에서 생산되는 자료의 품질을 측정하기 위해 대표성이 있으며, 계산하기 쉽고, 이해하기 쉬운 지수를 개발하는 것이었다. 유럽 통계협회는 연구팀에서 개발한 지수를 이용하여 내부품질보고서를 작성하도록 결정하였다. 개발된 풀질지수들은 유럽 통계협회 소속 국가에 의해 생산된 통계에 적용하기 적합해야하며 유럽전체를 위해 Eurostat 이 보유하고 있는 통계에도 적합해야한다. 그러므로 지수들은 각 국이 합의한 용어, 공식, 변수, 도메인, 분석의 정도를 고려하여 개발되도록 하였다. 이러한 지수는 정기적으로 생산되도록 규정하고 있으며 이 규정이 지켜지기 위해서는 동일한 변수, 공식 통이 적용되어야함은 물론이고 시계열의 유지를 위해 관련된 메타데이터가 제공되어야한다. 서로 다른 조사결과로부터 관련된 통계량의 측정과 개념들간의 차이를 확인하기 위해서 메타데이터는 반드시 필요하며 품질보고서가 있는 경우 많은 도움이 릴 것이다. 본 연구에서는 동계생산자의 관점에서 본 각각의 품질 요소에 따라서 생산된 다양한 통계의 풀질을 평가하기 위해서 개발된 일련의 표준화된 품질지수를 제시할 것이다. 각 지수들의 정의와 가장 대표적인 지수산출을 제안하고 지수산출을 위해 필요한 메타데이터를 선명한 것이다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.640-642
/
2004
온톨로지는 주어진 응용 도메인의 특성을 나타내는 관련 개념들의 집합과 정의 그리고 그들간의 관계로 이루어진다. 본 논문에서는 코퍼스에 있는 텍스트의 분석 결과를 이용한 온톨로지를 구축방안과 이를 문서의 검색에 사용함으로써 해당정보가 있는 자원을 찾는 정확도를 향상시키는 방안을 제시하고자 한다. 이를 위하여, 실험 도메인의 문서 내에 출현한 전문 용어들의 결합형태를 분석하여 계층구조를 도출해내는 알고리즘을 제안하며 구축된 온톨로지를 문서의 검색에 응용하였다. 제안된 온톨로지는 전통적인 문서검색의 인덱스 파일과 같은 역할을 하게 되며, 질의로 들어온 키워드뿐 아니라 그에 대한 온톨로지 내 하위어들에 기반하여 검색을 수행함으로써 많은 의미정보를 포함하고 있으며 검색의 정확도를 높일 수 있었다.
KIPS Transactions on Software and Data Engineering
/
v.7
no.8
/
pp.281-286
/
2018
With recent increase in complexity and variety of information and massively available information, interest in and necessity of ontology has been on the rise as a method of extracting a meaningful search result from massive data. Although there have been proposed many methods of extracting the ontology from a given text of a natural language, the extraction based on most of the current methods is not consistent with the structure of the ontology. In this paper, we propose a method of automatically creating ontology by distinguishing a term needed for establishing the ontology from a text given in a specific domain and extracting various relationships between the terms based on the pattern-based method. To extract the relationship between the terms, there is proposed a method of reducing the size of a searching space by taking a matching set of patterns into account and connecting a join-set concept and a pattern array. The result is that this method reduces the size of the search space by 50-95% without removing any useful patterns from the search space.
Social Network Services(SNS) such as Twitter, Facebook and Myspace have gained popularity worldwide. Especially, sentiment analysis of SNS users' sentence is very important since it is very useful in the opinion mining. In this paper, we propose a new sentiment classification method of sentences which contains formal and informal vocabulary such as emoticons, and newly coined words. Previous methods used only formal vocabulary to classify sentiments of sentences. However, these methods are not quite effective because internet users use sentences that contain informal vocabulary. In addition, we construct suggest to construct domain sentiment vocabulary because the same word may represent different sentiments in different domains. Feature vectors are extracted from the sentiment vocabulary information and classified by Support Vector Machine(SVM). Our proposed method shows good performance in classification accuracy.
Currently, hotel search engines may help travelers find hotels, but the returned set of information is usually not satisfactory to them. It is because the engines do not understand what travelers want exactly and cannot deal with the travelers' interest which is expressed in various terms, even including some ambiguous ones. The objective of this research is to build hotel ontology using currently available semantic web technologies such as RDF, OWL and SWRL and to show how it can be used to help travelers find hotels of their interest. To that end, we analyzed available hotel-related ontologies and investigated typical terms which are used when searching for hotels in the Q&A communities. Based on the results of the analysis and investigation, we designed hotel domain ontology which consists of Objective Concepts Ontology(OCO), Universal Concepts Ontology(UCO), and Evaluation Concepts Ontology(ECO). To demonstrate the use of the ontology for a hotel search, we developed a Semantic Hotel Search System (SHSS).
The Journal of Korean Association of Computer Education
/
v.11
no.3
/
pp.67-80
/
2008
Various document categorization methods have been studied to provide a user with an effective way of browsing a large scale of documents. They do compares set of documents into groups of semantically similar documents automatically. However, the automatic categorization method suffers from low accuracy. This thesis proposes a semi-automatic document categorization method based on the domains of documents. Each documents is belongs to its initial domain. All the documents in each domain are recursively clustered in a level-wise manner, so that the category tree of the documents can be founded. To find the clusters of documents, the stop-word of each document is removed on the document frequency of a word in the domain. For each cluster, its cluster keywords are extracted based on the common keywords among the documents, and are used as the category of the domain. Recursively, each cluster is regarded as a specified domain and the same procedure is repeated until it is terminated by a user. In each level of clustering, a user can adjust any incorrectly clustered documents to improve the accuracy of the document categorization.
Journal of the Korean Society for information Management
/
v.22
no.2
s.56
/
pp.41-56
/
2005
For the purpose of extending the Web that is able to understand and process information by machine, Semantic Web shared knowledge in the ontology form. For exquisite query processing, this paper proposes a method to use semantic relations in the ontology as relevance feedback information to query expansion. We made experiment on pharmacy domain. And in order to verify the effectiveness of the semantic relation in the ontology, we compared a keyword based document retrieval system that gives weights by using the frequency information compared with an ontology based document retrieval system that uses relevant information existed in the ontology to a relevant feedback. From the evaluation of the retrieval performance. we knew that search engine used the concepts and relations in ontology for improving precision effectively. Also it used them for the basis of the inference for improvement the retrieval performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.